The universal multiset
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2023-01-26.
Last modified on 2023-09-11.
module trees.universal-multiset where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.raising-universe-levels open import foundation.small-types open import foundation.small-universes open import foundation.transport-along-identifications open import foundation.universe-levels open import trees.functoriality-w-types open import trees.multisets open import trees.small-multisets open import trees.w-types
Idea
The universal multiset of universe level l
is the multiset of level
lsuc l
built out of 𝕍 l
and resizings of the multisets it contains
Definition
universal-multiset-𝕍 : (l : Level) → 𝕍 (lsuc l) universal-multiset-𝕍 l = tree-𝕎 ( 𝕍 l) ( λ X → resize-𝕍 X (is-small-multiset-𝕍 is-small-lsuc X))
Properties
If UU l1
is UU l
-small, then the universal multiset of level l1
is UU l
-small
is-small-universal-multiset-𝕍 : (l : Level) {l1 : Level} → is-small-universe l l1 → is-small-𝕍 l (universal-multiset-𝕍 l1) is-small-universal-multiset-𝕍 l {l1} (pair (pair U e) H) = pair ( pair ( 𝕎 U (λ x → pr1 (H (map-inv-equiv e x)))) ( equiv-𝕎 ( λ u → type-is-small (H (map-inv-equiv e u))) ( e) ( λ X → tr ( λ t → X ≃ pr1 (H t)) ( inv (is-retraction-map-inv-equiv e X)) ( pr2 (H X))))) ( f) where f : (X : 𝕍 l1) → is-small-𝕍 l (resize-𝕍 X (is-small-multiset-𝕍 is-small-lsuc X)) f (tree-𝕎 A α) = pair ( pair ( type-is-small (H A)) ( equiv-is-small (H A) ∘e inv-equiv (compute-raise (lsuc l1) A))) ( λ x → f (α (map-inv-raise x)))
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-15. Egbert Rijke. Replace
isretr
withis-retraction
andissec
withis-section
(#659). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-03. Egbert Rijke. Enriched directed trees and elements of W-types (#561).