Complete multipartite graphs

Content created by Jonathan Prieto-Cubides, Egbert Rijke and Fredrik Bakke.

Created on 2022-07-02.
Last modified on 2023-04-08.

module graph-theory.complete-multipartite-graphs where
Imports
open import foundation.universe-levels
open import foundation.unordered-pairs

open import graph-theory.finite-graphs

open import univalent-combinatorics.2-element-types
open import univalent-combinatorics.dependent-function-types
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.function-types

Idea

A complete multipartite graph consists of a finite list of sets V1,…,Vn, and for each unordered pair of distinct elements i,j≤n and each x : Vi and y : Vj an edge between x and y.

complete-multipartite-Undirected-Graph-𝔽 :
  {l1 l2 : Level} (X : 𝔽 l1) (Y : type-𝔽 X  𝔽 l2) 
  Undirected-Graph-𝔽 (l1  l2) l1
pr1 (complete-multipartite-Undirected-Graph-𝔽 X Y) = Σ-𝔽 X Y
pr2 (complete-multipartite-Undirected-Graph-𝔽 X Y) p =
  ( Π-𝔽 ( finite-type-2-Element-Type (pr1 p))
        ( λ x 
          Π-𝔽 ( finite-type-2-Element-Type (pr1 p))
              ( λ y 
                Id-𝔽 X
                  ( pr1 (element-unordered-pair p x))
                  ( pr1 (element-unordered-pair p y))))) →-𝔽
  empty-𝔽

Recent changes