Symmetric cores of binary relations
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2023-09-14.
Last modified on 2024-01-14.
module foundation.symmetric-cores-binary-relations where
Imports
open import foundation.binary-relations open import foundation.morphisms-binary-relations open import foundation.postcomposition-functions open import foundation.symmetric-binary-relations open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-function-types open import foundation.universe-levels open import foundation.unordered-pairs open import foundation-core.equivalences open import foundation-core.functoriality-dependent-function-types open import univalent-combinatorics.standard-finite-types
Idea
The symmetric core of a binary relation
R : A → A → 𝒰
on a type A
is a
symmetric binary relation core R
equipped with a counit
(x y : A) → core R {x , y} → R x y
that satisfies the universal property of the symmetric core, i.e., it satisfies
the property that for any symmetric relation S : unordered-pair A → 𝒰
, the
precomposition function
hom-Symmetric-Relation S (core R) → hom-Relation (rel S) R
is an equivalence. The symmetric core of a
binary relation R
is defined as the relation
core R (I,a) := (i : I) → R (a i) (a -i)
where -i
is the element of the
2-element type obtained by
applying the swap involution to i
. With this
definition it is easy to see that the universal property of the adjunction
should hold, since we have
((I,a) → S (I,a) → core R (I,a)) ≃ ((x y : A) → S {x,y} → R x y).
Definitions
The symmetric core of a binary relation
module _ {l1 l2 : Level} {A : UU l1} (R : Relation l2 A) where symmetric-core-Relation : Symmetric-Relation l2 A symmetric-core-Relation p = (i : type-unordered-pair p) → R (element-unordered-pair p i) (other-element-unordered-pair p i) counit-symmetric-core-Relation : {x y : A} → relation-Symmetric-Relation symmetric-core-Relation x y → R x y counit-symmetric-core-Relation {x} {y} r = tr ( R x) ( compute-other-element-standard-unordered-pair x y (zero-Fin 1)) ( r (zero-Fin 1))
Properties
The universal property of the symmetric core of a binary relation
module _ {l1 l2 l3 : Level} {A : UU l1} (R : Relation l2 A) (S : Symmetric-Relation l3 A) where map-universal-property-symmetric-core-Relation : hom-Symmetric-Relation S (symmetric-core-Relation R) → hom-Relation (relation-Symmetric-Relation S) R map-universal-property-symmetric-core-Relation f x y s = counit-symmetric-core-Relation R (f (standard-unordered-pair x y) s) equiv-universal-property-symmetric-core-Relation : hom-Symmetric-Relation S (symmetric-core-Relation R) ≃ hom-Relation (relation-Symmetric-Relation S) R equiv-universal-property-symmetric-core-Relation = ( equiv-Π-equiv-family ( λ x → equiv-Π-equiv-family ( λ y → equiv-postcomp ( S (standard-unordered-pair x y)) ( equiv-tr ( R _) ( compute-other-element-standard-unordered-pair x y ( zero-Fin 1)))))) ∘e ( equiv-dependent-universal-property-pointed-unordered-pairs ( λ p i → S p → R (element-unordered-pair p i) (other-element-unordered-pair p i))) ∘e ( equiv-Π-equiv-family (λ p → equiv-swap-Π)) universal-property-symmetric-core-Relation : is-equiv map-universal-property-symmetric-core-Relation universal-property-symmetric-core-Relation = is-equiv-map-equiv ( equiv-universal-property-symmetric-core-Relation)
Recent changes
- 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-12-05. Vojtěch Štěpančík. Functoriality of sequential colimits (#919).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).