Geometric sequences in semirings
Content created by Louis Wasserman, Fredrik Bakke and malarbol.
Created on 2025-08-30.
Last modified on 2025-08-30.
module ring-theory.geometric-sequences-semirings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.arithmetic-sequences-semigroups open import lists.sequences open import ring-theory.powers-of-elements-semirings open import ring-theory.semirings
Ideas
A geometric sequence¶ in a semiring is an arithmetic sequence in the semiring multiplicative semigroup.
These are sequences of the form n ↦ a * rⁿ
, for elements a
, r
in the
semiring.
Definitions
Geometric sequences in semirings
module _ {l : Level} (R : Semiring l) where geometric-sequence-Semiring : UU l geometric-sequence-Semiring = arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) module _ {l : Level} (R : Semiring l) (u : geometric-sequence-Semiring R) where seq-geometric-sequence-Semiring : ℕ → type-Semiring R seq-geometric-sequence-Semiring = seq-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u) is-geometric-seq-geometric-sequence-Semiring : is-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( seq-geometric-sequence-Semiring) is-geometric-seq-geometric-sequence-Semiring = is-arithmetic-seq-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u) common-ratio-geometric-sequence-Semiring : type-Semiring R common-ratio-geometric-sequence-Semiring = common-difference-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u) is-common-ratio-geometric-sequence-Semiring : ( n : ℕ) → ( seq-geometric-sequence-Semiring (succ-ℕ n)) = ( mul-Semiring ( R) ( seq-geometric-sequence-Semiring n) ( common-ratio-geometric-sequence-Semiring)) is-common-ratio-geometric-sequence-Semiring = is-common-difference-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u) initial-term-geometric-sequence-Semiring : type-Semiring R initial-term-geometric-sequence-Semiring = initial-term-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u)
The standard geometric sequences in a semiring
The standard geometric sequence with initial term a
and common factor r
is
the sequence u
defined by:
u₀ = a
uₙ₊₁ = uₙ * r
module _ {l : Level} (R : Semiring l) (a r : type-Semiring R) where standard-geometric-sequence-Semiring : geometric-sequence-Semiring R standard-geometric-sequence-Semiring = standard-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( a) ( r) seq-standard-geometric-sequence-Semiring : ℕ → type-Semiring R seq-standard-geometric-sequence-Semiring = seq-geometric-sequence-Semiring R standard-geometric-sequence-Semiring is-geometric-standard-geometric-sequence-Semiring : is-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( seq-standard-geometric-sequence-Semiring) is-geometric-standard-geometric-sequence-Semiring = is-geometric-seq-geometric-sequence-Semiring R standard-geometric-sequence-Semiring
The geometric sequences n ↦ a * rⁿ
module _ {l : Level} (R : Semiring l) (a r : type-Semiring R) where mul-pow-nat-Semiring : ℕ → type-Semiring R mul-pow-nat-Semiring n = mul-Semiring R a (power-Semiring R n r) is-common-ratio-mul-pow-nat-Semiring : is-common-difference-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( mul-pow-nat-Semiring) ( r) is-common-ratio-mul-pow-nat-Semiring n = ( ap ( mul-Semiring R a) ( power-succ-Semiring R n r)) ∙ ( inv ( associative-mul-Semiring ( R) ( a) ( power-Semiring R n r) ( r))) is-geometric-mul-pow-nat-Semiring : is-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( mul-pow-nat-Semiring) is-geometric-mul-pow-nat-Semiring = ( r , is-common-ratio-mul-pow-nat-Semiring) geometric-mul-pow-nat-Semiring : geometric-sequence-Semiring R geometric-mul-pow-nat-Semiring = ( mul-pow-nat-Semiring , is-geometric-mul-pow-nat-Semiring) initial-term-mul-pow-nat-Semiring : type-Semiring R initial-term-mul-pow-nat-Semiring = initial-term-geometric-sequence-Semiring ( R) ( geometric-mul-pow-nat-Semiring) eq-initial-term-mul-pow-nat-Semiring : initial-term-mul-pow-nat-Semiring = a eq-initial-term-mul-pow-nat-Semiring = right-unit-law-mul-Semiring R a
Properties
Any geometric sequence in a semiring is homotopic to a standard geometric sequence
module _ {l : Level} (R : Semiring l) (u : geometric-sequence-Semiring R) where htpy-seq-standard-geometric-sequence-Semiring : ( seq-geometric-sequence-Semiring R ( standard-geometric-sequence-Semiring R ( initial-term-geometric-sequence-Semiring R u) ( common-ratio-geometric-sequence-Semiring R u))) ~ ( seq-geometric-sequence-Semiring R u) htpy-seq-standard-geometric-sequence-Semiring = htpy-seq-standard-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u)
The nth term of an geometric sequence with initial term a
and common ratio r
is a * rⁿ
module _ {l : Level} (R : Semiring l) (a r : type-Semiring R) where htpy-mul-pow-standard-geometric-sequence-Semiring : mul-pow-nat-Semiring R a r ~ seq-standard-geometric-sequence-Semiring R a r htpy-mul-pow-standard-geometric-sequence-Semiring = htpy-seq-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( geometric-mul-pow-nat-Semiring R a r) ( standard-geometric-sequence-Semiring R a r) ( eq-initial-term-mul-pow-nat-Semiring R a r) ( refl)
module _ {l : Level} (R : Semiring l) (u : geometric-sequence-Semiring R) where htpy-mul-pow-geometric-sequence-Semiring : mul-pow-nat-Semiring ( R) ( initial-term-geometric-sequence-Semiring R u) ( common-ratio-geometric-sequence-Semiring R u) ~ seq-geometric-sequence-Semiring R u htpy-mul-pow-geometric-sequence-Semiring n = ( htpy-mul-pow-standard-geometric-sequence-Semiring ( R) ( initial-term-geometric-sequence-Semiring R u) ( common-ratio-geometric-sequence-Semiring R u) ( n)) ∙ ( htpy-seq-standard-arithmetic-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( u) ( n))
Constant sequences are geometric with common ratio one
module _ {l : Level} (R : Semiring l) (a : type-Semiring R) where one-is-common-ratio-const-sequence-Semiring : is-common-difference-sequence-Semigroup ( multiplicative-semigroup-Semiring R) ( λ _ → a) ( one-Semiring R) one-is-common-ratio-const-sequence-Semiring n = inv (right-unit-law-mul-Semiring R a) geometric-const-sequence-Semiring : geometric-sequence-Semiring R pr1 geometric-const-sequence-Semiring _ = a pr2 geometric-const-sequence-Semiring = ( one-Semiring R , one-is-common-ratio-const-sequence-Semiring)
External links
- Geometric progressions at Wikipedia
Recent changes
- 2025-08-30. Louis Wasserman and Fredrik Bakke. Move sequences to
lists
namespace (#1476). - 2025-08-30. malarbol and Louis Wasserman. Arithmetic and geometric sequences in semirings (#1475).