Equivalences of directed graphs
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Vojtěch Štěpančík.
Created on 2023-01-29.
Last modified on 2024-10-16.
module graph-theory.equivalences-directed-graphs where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalence-extensionality open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.torsorial-type-families open import foundation.transposition-identifications-along-equivalences open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-theoretic-principle-of-choice open import foundation.univalence open import foundation.universe-levels open import graph-theory.directed-graphs open import graph-theory.morphisms-directed-graphs
Idea
An equivalence of directed graphs from a
directed graph (V,E)
to a directed graph
(V',E')
consists of an equivalence
e : V ≃ V'
of vertices, and a family of equivalences E x y ≃ E' (e x) (e y)
of edges indexed by x y : V
.
Definitions
Equivalences of directed graphs
equiv-Directed-Graph : {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) equiv-Directed-Graph G H = Σ ( vertex-Directed-Graph G ≃ vertex-Directed-Graph H) ( λ e → (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y ≃ edge-Directed-Graph H (map-equiv e x) (map-equiv e y)) module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (e : equiv-Directed-Graph G H) where equiv-vertex-equiv-Directed-Graph : vertex-Directed-Graph G ≃ vertex-Directed-Graph H equiv-vertex-equiv-Directed-Graph = pr1 e vertex-equiv-Directed-Graph : vertex-Directed-Graph G → vertex-Directed-Graph H vertex-equiv-Directed-Graph = map-equiv equiv-vertex-equiv-Directed-Graph is-equiv-vertex-equiv-Directed-Graph : is-equiv vertex-equiv-Directed-Graph is-equiv-vertex-equiv-Directed-Graph = is-equiv-map-equiv equiv-vertex-equiv-Directed-Graph inv-vertex-equiv-Directed-Graph : vertex-Directed-Graph H → vertex-Directed-Graph G inv-vertex-equiv-Directed-Graph = map-inv-equiv equiv-vertex-equiv-Directed-Graph is-section-inv-vertex-equiv-Directed-Graph : ( vertex-equiv-Directed-Graph ∘ inv-vertex-equiv-Directed-Graph) ~ id is-section-inv-vertex-equiv-Directed-Graph = is-section-map-inv-equiv equiv-vertex-equiv-Directed-Graph is-retraction-inv-vertex-equiv-Directed-Graph : ( inv-vertex-equiv-Directed-Graph ∘ vertex-equiv-Directed-Graph) ~ id is-retraction-inv-vertex-equiv-Directed-Graph = is-retraction-map-inv-equiv equiv-vertex-equiv-Directed-Graph equiv-edge-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y ≃ edge-Directed-Graph H ( vertex-equiv-Directed-Graph x) ( vertex-equiv-Directed-Graph y) equiv-edge-equiv-Directed-Graph = pr2 e edge-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y → edge-Directed-Graph H ( vertex-equiv-Directed-Graph x) ( vertex-equiv-Directed-Graph y) edge-equiv-Directed-Graph x y = map-equiv (equiv-edge-equiv-Directed-Graph x y) is-equiv-edge-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) → is-equiv (edge-equiv-Directed-Graph x y) is-equiv-edge-equiv-Directed-Graph x y = is-equiv-map-equiv (equiv-edge-equiv-Directed-Graph x y)
The condition on a morphism of directed graphs to be an equivalence
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) where is-equiv-hom-Directed-Graph : hom-Directed-Graph G H → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-equiv-hom-Directed-Graph f = ( is-equiv (vertex-hom-Directed-Graph G H f)) × ( (x y : vertex-Directed-Graph G) → is-equiv (edge-hom-Directed-Graph G H f {x} {y})) equiv-is-equiv-hom-Directed-Graph : (f : hom-Directed-Graph G H) → is-equiv-hom-Directed-Graph f → equiv-Directed-Graph G H pr1 (equiv-is-equiv-hom-Directed-Graph f (K , L)) = ( vertex-hom-Directed-Graph G H f , K) pr2 (equiv-is-equiv-hom-Directed-Graph f (K , L)) x y = ( edge-hom-Directed-Graph G H f , L x y) compute-equiv-Directed-Graph : equiv-Directed-Graph G H ≃ Σ (hom-Directed-Graph G H) is-equiv-hom-Directed-Graph compute-equiv-Directed-Graph = interchange-Σ-Σ ( λ fV H fE → (x y : vertex-Directed-Graph G) → is-equiv (fE x y)) ∘e ( equiv-tot ( λ fV → distributive-Π-Σ ∘e equiv-Π-equiv-family (λ x → distributive-Π-Σ))) hom-equiv-Directed-Graph : equiv-Directed-Graph G H → hom-Directed-Graph G H hom-equiv-Directed-Graph e = pr1 (map-equiv compute-equiv-Directed-Graph e) compute-hom-equiv-Directed-Graph : (e : equiv-Directed-Graph G H) → hom-equiv-Directed-Graph e = ( vertex-equiv-Directed-Graph G H e , edge-equiv-Directed-Graph G H e) compute-hom-equiv-Directed-Graph e = refl is-equiv-equiv-Directed-Graph : (e : equiv-Directed-Graph G H) → is-equiv-hom-Directed-Graph (hom-equiv-Directed-Graph e) is-equiv-equiv-Directed-Graph e = pr2 (map-equiv compute-equiv-Directed-Graph e)
Identity equivalences of directed graphs
id-equiv-Directed-Graph : {l1 l2 : Level} (G : Directed-Graph l1 l2) → equiv-Directed-Graph G G pr1 (id-equiv-Directed-Graph G) = id-equiv pr2 (id-equiv-Directed-Graph G) x y = id-equiv
Composition of equivalences of directed graphs
module _ {l1 l2 l3 l4 l5 l6 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (K : Directed-Graph l5 l6) (g : equiv-Directed-Graph H K) (f : equiv-Directed-Graph G H) where equiv-vertex-comp-equiv-Directed-Graph : vertex-Directed-Graph G ≃ vertex-Directed-Graph K equiv-vertex-comp-equiv-Directed-Graph = ( equiv-vertex-equiv-Directed-Graph H K g) ∘e ( equiv-vertex-equiv-Directed-Graph G H f) vertex-comp-equiv-Directed-Graph : vertex-Directed-Graph G → vertex-Directed-Graph K vertex-comp-equiv-Directed-Graph = map-equiv equiv-vertex-comp-equiv-Directed-Graph equiv-edge-comp-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y ≃ edge-Directed-Graph K ( vertex-comp-equiv-Directed-Graph x) ( vertex-comp-equiv-Directed-Graph y) equiv-edge-comp-equiv-Directed-Graph x y = ( equiv-edge-equiv-Directed-Graph H K g ( vertex-equiv-Directed-Graph G H f x) ( vertex-equiv-Directed-Graph G H f y)) ∘e ( equiv-edge-equiv-Directed-Graph G H f x y) edge-comp-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y → edge-Directed-Graph K ( vertex-comp-equiv-Directed-Graph x) ( vertex-comp-equiv-Directed-Graph y) edge-comp-equiv-Directed-Graph x y = map-equiv (equiv-edge-comp-equiv-Directed-Graph x y) comp-equiv-Directed-Graph : equiv-Directed-Graph G K pr1 comp-equiv-Directed-Graph = equiv-vertex-comp-equiv-Directed-Graph pr2 comp-equiv-Directed-Graph = equiv-edge-comp-equiv-Directed-Graph
Homotopies of equivalences of directed graphs
htpy-equiv-Directed-Graph : {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (e f : equiv-Directed-Graph G H) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-equiv-Directed-Graph G H e f = htpy-hom-Directed-Graph G H ( hom-equiv-Directed-Graph G H e) ( hom-equiv-Directed-Graph G H f)
The reflexivity homotopy of equivalences of directed graphs
refl-htpy-equiv-Directed-Graph : {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (e : equiv-Directed-Graph G H) → htpy-equiv-Directed-Graph G H e e refl-htpy-equiv-Directed-Graph G H e = refl-htpy-hom-Directed-Graph G H (hom-equiv-Directed-Graph G H e)
Properties
Homotopies characterize identifications of equivalences of directed graphs
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (e : equiv-Directed-Graph G H) where is-torsorial-htpy-equiv-Directed-Graph : is-torsorial (htpy-equiv-Directed-Graph G H e) is-torsorial-htpy-equiv-Directed-Graph = is-torsorial-Eq-structure ( is-torsorial-htpy-equiv (equiv-vertex-equiv-Directed-Graph G H e)) ( equiv-vertex-equiv-Directed-Graph G H e , refl-htpy) ( is-torsorial-Eq-Π ( λ x → is-torsorial-Eq-Π ( λ y → is-torsorial-htpy-equiv ( equiv-edge-equiv-Directed-Graph G H e x y)))) htpy-eq-equiv-Directed-Graph : (f : equiv-Directed-Graph G H) → e = f → htpy-equiv-Directed-Graph G H e f htpy-eq-equiv-Directed-Graph .e refl = refl-htpy-equiv-Directed-Graph G H e is-equiv-htpy-eq-equiv-Directed-Graph : (f : equiv-Directed-Graph G H) → is-equiv (htpy-eq-equiv-Directed-Graph f) is-equiv-htpy-eq-equiv-Directed-Graph = fundamental-theorem-id is-torsorial-htpy-equiv-Directed-Graph htpy-eq-equiv-Directed-Graph extensionality-equiv-Directed-Graph : (f : equiv-Directed-Graph G H) → (e = f) ≃ htpy-equiv-Directed-Graph G H e f pr1 (extensionality-equiv-Directed-Graph f) = htpy-eq-equiv-Directed-Graph f pr2 (extensionality-equiv-Directed-Graph f) = is-equiv-htpy-eq-equiv-Directed-Graph f eq-htpy-equiv-Directed-Graph : (f : equiv-Directed-Graph G H) → htpy-equiv-Directed-Graph G H e f → e = f eq-htpy-equiv-Directed-Graph f = map-inv-equiv (extensionality-equiv-Directed-Graph f)
Equivalences of directed graphs characterize identifications of directed graphs
module _ {l1 l2 : Level} (G : Directed-Graph l1 l2) where extensionality-Directed-Graph : (H : Directed-Graph l1 l2) → (G = H) ≃ equiv-Directed-Graph G H extensionality-Directed-Graph = extensionality-Σ ( λ {V} E e → ( x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y ≃ E (map-equiv e x) (map-equiv e y)) ( id-equiv) ( λ x y → id-equiv) ( λ X → equiv-univalence) ( extensionality-Π ( λ x y → edge-Directed-Graph G x y) ( λ x F → (y : vertex-Directed-Graph G) → edge-Directed-Graph G x y ≃ F y) ( λ x → extensionality-Π ( λ y → edge-Directed-Graph G x y) ( λ y X → edge-Directed-Graph G x y ≃ X) ( λ y X → equiv-univalence))) equiv-eq-Directed-Graph : (H : Directed-Graph l1 l2) → (G = H) → equiv-Directed-Graph G H equiv-eq-Directed-Graph H = map-equiv (extensionality-Directed-Graph H) eq-equiv-Directed-Graph : (H : Directed-Graph l1 l2) → equiv-Directed-Graph G H → (G = H) eq-equiv-Directed-Graph H = map-inv-equiv (extensionality-Directed-Graph H) is-torsorial-equiv-Directed-Graph : is-torsorial (equiv-Directed-Graph G) is-torsorial-equiv-Directed-Graph = is-contr-equiv' ( Σ (Directed-Graph l1 l2) (λ H → G = H)) ( equiv-tot extensionality-Directed-Graph) ( is-torsorial-Id G)
The inverse of an equivalence of directed trees
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (f : equiv-Directed-Graph G H) where equiv-vertex-inv-equiv-Directed-Graph : vertex-Directed-Graph H ≃ vertex-Directed-Graph G equiv-vertex-inv-equiv-Directed-Graph = inv-equiv (equiv-vertex-equiv-Directed-Graph G H f) vertex-inv-equiv-Directed-Graph : vertex-Directed-Graph H → vertex-Directed-Graph G vertex-inv-equiv-Directed-Graph = map-inv-equiv (equiv-vertex-equiv-Directed-Graph G H f) is-section-vertex-inv-equiv-Directed-Graph : ( vertex-equiv-Directed-Graph G H f ∘ vertex-inv-equiv-Directed-Graph) ~ id is-section-vertex-inv-equiv-Directed-Graph = is-section-map-inv-equiv (equiv-vertex-equiv-Directed-Graph G H f) is-retraction-vertex-inv-equiv-Directed-Graph : ( vertex-inv-equiv-Directed-Graph ∘ vertex-equiv-Directed-Graph G H f) ~ id is-retraction-vertex-inv-equiv-Directed-Graph = is-retraction-map-inv-equiv (equiv-vertex-equiv-Directed-Graph G H f) is-equiv-vertex-inv-equiv-Directed-Graph : is-equiv vertex-inv-equiv-Directed-Graph is-equiv-vertex-inv-equiv-Directed-Graph = is-equiv-map-inv-equiv (equiv-vertex-equiv-Directed-Graph G H f) equiv-edge-inv-equiv-Directed-Graph : (x y : vertex-Directed-Graph H) → edge-Directed-Graph H x y ≃ edge-Directed-Graph G ( vertex-inv-equiv-Directed-Graph x) ( vertex-inv-equiv-Directed-Graph y) equiv-edge-inv-equiv-Directed-Graph x y = ( inv-equiv ( equiv-edge-equiv-Directed-Graph G H f ( vertex-inv-equiv-Directed-Graph x) ( vertex-inv-equiv-Directed-Graph y))) ∘e ( equiv-binary-tr ( edge-Directed-Graph H) ( inv (is-section-vertex-inv-equiv-Directed-Graph x)) ( inv (is-section-vertex-inv-equiv-Directed-Graph y))) edge-inv-equiv-Directed-Graph : (x y : vertex-Directed-Graph H) → edge-Directed-Graph H x y → edge-Directed-Graph G ( vertex-inv-equiv-Directed-Graph x) ( vertex-inv-equiv-Directed-Graph y) edge-inv-equiv-Directed-Graph x y = map-equiv (equiv-edge-inv-equiv-Directed-Graph x y) hom-inv-equiv-Directed-Graph : hom-Directed-Graph H G pr1 hom-inv-equiv-Directed-Graph = vertex-inv-equiv-Directed-Graph pr2 hom-inv-equiv-Directed-Graph = edge-inv-equiv-Directed-Graph inv-equiv-Directed-Graph : equiv-Directed-Graph H G pr1 inv-equiv-Directed-Graph = equiv-vertex-inv-equiv-Directed-Graph pr2 inv-equiv-Directed-Graph = equiv-edge-inv-equiv-Directed-Graph vertex-is-section-inv-equiv-Directed-Graph : ( vertex-equiv-Directed-Graph G H f ∘ vertex-inv-equiv-Directed-Graph) ~ id vertex-is-section-inv-equiv-Directed-Graph = is-section-vertex-inv-equiv-Directed-Graph edge-is-section-inv-equiv-Directed-Graph : (x y : vertex-Directed-Graph H) (e : edge-Directed-Graph H x y) → binary-tr ( edge-Directed-Graph H) ( vertex-is-section-inv-equiv-Directed-Graph x) ( vertex-is-section-inv-equiv-Directed-Graph y) ( edge-equiv-Directed-Graph G H f ( vertex-inv-equiv-Directed-Graph x) ( vertex-inv-equiv-Directed-Graph y) ( edge-inv-equiv-Directed-Graph x y e)) = e edge-is-section-inv-equiv-Directed-Graph x y e = ( ap ( binary-tr ( edge-Directed-Graph H) ( vertex-is-section-inv-equiv-Directed-Graph x) ( vertex-is-section-inv-equiv-Directed-Graph y)) ( is-section-map-inv-equiv ( equiv-edge-equiv-Directed-Graph G H f ( vertex-inv-equiv-Directed-Graph x) ( vertex-inv-equiv-Directed-Graph y)) ( binary-tr ( edge-Directed-Graph H) ( inv (is-section-map-inv-equiv (pr1 f) x)) ( inv (is-section-map-inv-equiv (pr1 f) y)) ( e)))) ∙ ( ( inv ( binary-tr-concat ( edge-Directed-Graph H) ( inv (vertex-is-section-inv-equiv-Directed-Graph x)) ( vertex-is-section-inv-equiv-Directed-Graph x) ( inv (vertex-is-section-inv-equiv-Directed-Graph y)) ( vertex-is-section-inv-equiv-Directed-Graph y) ( e))) ∙ ( ap-binary ( λ p q → binary-tr (edge-Directed-Graph H) p q e) ( left-inv (vertex-is-section-inv-equiv-Directed-Graph x)) ( left-inv (vertex-is-section-inv-equiv-Directed-Graph y)))) is-section-inv-equiv-Directed-Graph : htpy-equiv-Directed-Graph H H ( comp-equiv-Directed-Graph H G H f (inv-equiv-Directed-Graph)) ( id-equiv-Directed-Graph H) pr1 is-section-inv-equiv-Directed-Graph = vertex-is-section-inv-equiv-Directed-Graph pr2 is-section-inv-equiv-Directed-Graph = edge-is-section-inv-equiv-Directed-Graph vertex-is-retraction-inv-equiv-Directed-Graph : ( vertex-inv-equiv-Directed-Graph ∘ vertex-equiv-Directed-Graph G H f) ~ id vertex-is-retraction-inv-equiv-Directed-Graph = is-retraction-vertex-inv-equiv-Directed-Graph edge-is-retraction-inv-equiv-Directed-Graph : (x y : vertex-Directed-Graph G) (e : edge-Directed-Graph G x y) → binary-tr ( edge-Directed-Graph G) ( vertex-is-retraction-inv-equiv-Directed-Graph x) ( vertex-is-retraction-inv-equiv-Directed-Graph y) ( edge-inv-equiv-Directed-Graph ( vertex-equiv-Directed-Graph G H f x) ( vertex-equiv-Directed-Graph G H f y) ( edge-equiv-Directed-Graph G H f x y e)) = e edge-is-retraction-inv-equiv-Directed-Graph x y e = transpose-binary-path-over' ( edge-Directed-Graph G) ( vertex-is-retraction-inv-equiv-Directed-Graph x) ( vertex-is-retraction-inv-equiv-Directed-Graph y) ( map-eq-transpose-equiv-inv ( equiv-edge-equiv-Directed-Graph G H f ( vertex-inv-equiv-Directed-Graph ( vertex-equiv-Directed-Graph G H f x)) ( vertex-inv-equiv-Directed-Graph ( vertex-equiv-Directed-Graph G H f y))) ( ( ap-binary ( λ u v → binary-tr ( edge-Directed-Graph H) ( u) ( v) ( edge-equiv-Directed-Graph G H f x y e)) ( ( ap ( inv) ( coherence-map-inv-equiv ( equiv-vertex-equiv-Directed-Graph G H f) ( x))) ∙ ( inv ( ap-inv ( vertex-equiv-Directed-Graph G H f) ( vertex-is-retraction-inv-equiv-Directed-Graph x)))) ( ( ap ( inv) ( coherence-map-inv-equiv ( equiv-vertex-equiv-Directed-Graph G H f) ( y))) ∙ ( inv ( ap-inv ( vertex-equiv-Directed-Graph G H f) ( vertex-is-retraction-inv-equiv-Directed-Graph y))))) ∙ ( binary-tr-ap ( edge-Directed-Graph H) ( edge-equiv-Directed-Graph G H f) ( inv (vertex-is-retraction-inv-equiv-Directed-Graph x)) ( inv (vertex-is-retraction-inv-equiv-Directed-Graph y)) ( refl)))) is-retraction-inv-equiv-Directed-Graph : htpy-equiv-Directed-Graph G G ( comp-equiv-Directed-Graph G H G (inv-equiv-Directed-Graph) f) ( id-equiv-Directed-Graph G) pr1 is-retraction-inv-equiv-Directed-Graph = vertex-is-retraction-inv-equiv-Directed-Graph pr2 is-retraction-inv-equiv-Directed-Graph = edge-is-retraction-inv-equiv-Directed-Graph
External links
- Graph isomoprhism at Wikidata
- Graph isomorphism at Wikipedia
- Graph isomorphism at Wolfram MathWorld
- Isomorphism at Lab
Recent changes
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2024-01-11. Fredrik Bakke. Make type family implicit for
is-torsorial-Eq-structure
andis-torsorial-Eq-Π
(#995). - 2023-12-05. Vojtěch Štěpančík. Functoriality of sequential colimits (#919).