Ordinals
Content created by Fernando Chu.
Created on 2024-08-05.
Last modified on 2024-08-05.
module order-theory.ordinals where
Imports
open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.well-founded-orders open import order-theory.well-founded-relations
Idea
An ordinal is a propositional relation that is
- Transitive:
R x y
andR y z
implyR x y
. - Extensional:
R x y
andR y x
implyx = y
. - Well-founded: a structure on which it is well-defined to do induction.
In other words, it is a
well-founded order that is Prop
-valued
and antisymmetric.
Definitions
The predicate of being an ordinal
module _ {l1 l2 : Level} {X : UU l1} (R : Relation-Prop l2 X) where is-ordinal : UU (l1 ⊔ l2) is-ordinal = is-well-founded-order-Relation (type-Relation-Prop R) × is-antisymmetric (type-Relation-Prop R)
Ordinals
Ordinal : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Ordinal l2 X = Σ (Relation-Prop l2 X) is-ordinal module _ {l1 l2 : Level} {X : UU l1} (S : Ordinal l2 X) where lt-prop-Ordinal : Relation-Prop l2 X lt-prop-Ordinal = pr1 S lt-Ordinal : Relation l2 X lt-Ordinal = type-Relation-Prop lt-prop-Ordinal is-ordinal-Ordinal : is-ordinal lt-prop-Ordinal is-ordinal-Ordinal = pr2 S is-well-founded-order-Ordinal : is-well-founded-order-Relation lt-Ordinal is-well-founded-order-Ordinal = pr1 is-ordinal-Ordinal is-antisymmetric-Ordinal : is-antisymmetric lt-Ordinal is-antisymmetric-Ordinal = pr2 is-ordinal-Ordinal is-transitive-Ordinal : is-transitive lt-Ordinal is-transitive-Ordinal = pr1 is-well-founded-order-Ordinal is-well-founded-relation-Ordinal : is-well-founded-Relation lt-Ordinal is-well-founded-relation-Ordinal = pr2 is-well-founded-order-Ordinal well-founded-relation-Ordinal : Well-Founded-Relation l2 X pr1 well-founded-relation-Ordinal = lt-Ordinal pr2 well-founded-relation-Ordinal = is-well-founded-relation-Ordinal is-asymmetric-Ordinal : is-asymmetric lt-Ordinal is-asymmetric-Ordinal = is-asymmetric-Well-Founded-Relation well-founded-relation-Ordinal is-irreflexive-Ordinal : is-irreflexive lt-Ordinal is-irreflexive-Ordinal = is-irreflexive-Well-Founded-Relation ( well-founded-relation-Ordinal)
Recent changes
- 2024-08-05. Fernando Chu. Definition of ordinals (#1159).