Fibers of globular maps
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.fibers-globular-maps where
Imports
open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.identity-types open import foundation.universe-levels open import globular-types.dependent-globular-types open import globular-types.globular-maps open import globular-types.globular-types
Idea
Consider a globular map f : H → G
between
two globular types H
and G
. The
fiber¶ of
f
is a dependent globular type
fib_f
given by
(fib_f)₀ x := fib f₀ x
(fib_f)' (y , refl) (y' , refl) := fib_f'.
Definitions
The fiber of a globular map
fiber-globular-map : {l1 l2 l3 l4 : Level} (H : Globular-Type l1 l2) (G : Globular-Type l3 l4) (f : globular-map H G) → Dependent-Globular-Type (l1 ⊔ l3) (l2 ⊔ l4) G 0-cell-Dependent-Globular-Type ( fiber-globular-map H G f) = fiber (0-cell-globular-map f) 1-cell-dependent-globular-type-Dependent-Globular-Type ( fiber-globular-map H G f) {x} {x'} (y , refl) (y' , refl) = fiber-globular-map ( 1-cell-globular-type-Globular-Type H y y') ( 1-cell-globular-type-Globular-Type G _ _) ( 1-cell-globular-map-globular-map f)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).