The poset of closed intervals in total orders
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module order-theory.poset-closed-intervals-total-orders where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import order-theory.closed-intervals-total-orders open import order-theory.poset-closed-intervals-posets open import order-theory.posets open import order-theory.preorders open import order-theory.total-orders
Idea
In a total order T
, the type of
closed intervals in T
itself
forms a poset, with inequality defined by containment
of the corresponding subtypes. Equivalently, [a,b] ≤ [c,d]
if c ≤ a
and
b ≤ d
.
Definition
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where leq-prop-closed-interval-Total-Order : Relation-Prop l2 (closed-interval-Total-Order T) leq-prop-closed-interval-Total-Order = leq-prop-closed-interval-Poset (poset-Total-Order T) leq-closed-interval-Total-Order : Relation l2 (closed-interval-Total-Order T) leq-closed-interval-Total-Order = leq-closed-interval-Poset (poset-Total-Order T)
Properties
Containment is a preorder
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where refl-leq-closed-interval-Total-Order : is-reflexive (leq-closed-interval-Total-Order T) refl-leq-closed-interval-Total-Order = refl-leq-closed-interval-Poset (poset-Total-Order T) transitive-leq-closed-interval-Total-Order : is-transitive (leq-closed-interval-Total-Order T) transitive-leq-closed-interval-Total-Order = transitive-leq-closed-interval-Poset (poset-Total-Order T) is-preorder-leq-closed-interval-Total-Order : is-preorder-Relation-Prop (leq-prop-closed-interval-Total-Order T) is-preorder-leq-closed-interval-Total-Order = is-preorder-leq-closed-interval-Poset (poset-Total-Order T)
Containment is a poset
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where antisymmetric-leq-closed-interval-Total-Order : is-antisymmetric (leq-closed-interval-Total-Order T) antisymmetric-leq-closed-interval-Total-Order = antisymmetric-leq-closed-interval-Poset (poset-Total-Order T) poset-closed-interval-Total-Order : Poset (l1 ⊔ l2) l2 poset-closed-interval-Total-Order = poset-closed-interval-Poset (poset-Total-Order T)
Containment of closed intervals is equivalent to containment of subtypes
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where leq-subtype-leq-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → leq-closed-interval-Total-Order T [a,b] [c,d] → ( subtype-closed-interval-Total-Order T [a,b] ⊆ subtype-closed-interval-Total-Order T [c,d]) leq-subtype-leq-closed-interval-Total-Order = leq-subtype-leq-closed-interval-Poset (poset-Total-Order T) leq-closed-interval-leq-subtype-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → ( subtype-closed-interval-Total-Order T [a,b] ⊆ subtype-closed-interval-Total-Order T [c,d]) → leq-closed-interval-Total-Order T [a,b] [c,d] leq-closed-interval-leq-subtype-Total-Order = leq-closed-interval-leq-subtype-Poset (poset-Total-Order T) leq-subtype-iff-leq-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → ( leq-closed-interval-Total-Order T [a,b] [c,d] ↔ ( subtype-closed-interval-Total-Order T [a,b] ⊆ subtype-closed-interval-Total-Order T [c,d])) leq-subtype-iff-leq-closed-interval-Total-Order = leq-subtype-iff-leq-closed-interval-Poset (poset-Total-Order T)
Recent changes
- 2025-10-04. Louis Wasserman. Poset of closed intervals (#1563).