The precategory of commutative monoids

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-05-06.
Last modified on 2024-03-11.

module group-theory.precategory-of-commutative-monoids where
Imports
open import category-theory.full-large-subprecategories
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.precategory-of-monoids

Idea

The precategory of commutative monoids consists of commutative monoids and homomorphisms of monoids.

Definitions

The precategory of commutative monoids as a full subprecategory of monoids

Commutative-Monoid-Full-Large-Subprecategory :
  Full-Large-Subprecategory  l  l) Monoid-Large-Precategory
Commutative-Monoid-Full-Large-Subprecategory = is-commutative-prop-Monoid

The large precategory of commutative monoids

Commutative-Monoid-Large-Precategory : Large-Precategory lsuc (_⊔_)
Commutative-Monoid-Large-Precategory =
  large-precategory-Full-Large-Subprecategory
    ( Monoid-Large-Precategory)
    ( Commutative-Monoid-Full-Large-Subprecategory)

The precategory of small commutative monoids

Commutative-Monoid-Precategory : (l : Level)  Precategory (lsuc l) l
Commutative-Monoid-Precategory =
  precategory-Large-Precategory Commutative-Monoid-Large-Precategory

Recent changes