Cartesian products of semigroups
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-05-21.
Last modified on 2024-02-06.
module group-theory.cartesian-products-semigroups where
Imports
open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.semigroups
Idea
The cartesian product of two semigroups A
and B
consists of the cartesian
product of its underlying sets and the componentwise multiplication
Definition
module _ {l1 l2 : Level} (A : Semigroup l1) (B : Semigroup l2) where set-product-Semigroup : Set (l1 ⊔ l2) set-product-Semigroup = product-Set (set-Semigroup A) (set-Semigroup B) type-product-Semigroup : UU (l1 ⊔ l2) type-product-Semigroup = type-Set set-product-Semigroup is-set-type-product-Semigroup : is-set type-product-Semigroup is-set-type-product-Semigroup = is-set-type-Set set-product-Semigroup mul-product-Semigroup : type-product-Semigroup → type-product-Semigroup → type-product-Semigroup pr1 (mul-product-Semigroup (pair x1 y1) (pair x2 y2)) = mul-Semigroup A x1 x2 pr2 (mul-product-Semigroup (pair x1 y1) (pair x2 y2)) = mul-Semigroup B y1 y2 associative-mul-product-Semigroup : (x y z : type-product-Semigroup) → Id ( mul-product-Semigroup (mul-product-Semigroup x y) z) ( mul-product-Semigroup x (mul-product-Semigroup y z)) associative-mul-product-Semigroup (pair x1 y1) (pair x2 y2) (pair x3 y3) = eq-pair ( associative-mul-Semigroup A x1 x2 x3) ( associative-mul-Semigroup B y1 y2 y3) product-Semigroup : Semigroup (l1 ⊔ l2) pr1 product-Semigroup = set-product-Semigroup pr1 (pr2 product-Semigroup) = mul-product-Semigroup pr2 (pr2 product-Semigroup) = associative-mul-product-Semigroup
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).