Split essentially surjective functors between precategories
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2024-03-12.
module category-theory.split-essentially-surjective-functors-precategories where
Imports
open import category-theory.essential-fibers-of-functors-precategories open import category-theory.essentially-surjective-functors-precategories open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels
Idea
A functor F : C → D
between
precategories is split essentially
surjective if there is a section of the
essential fiber
over every object of D
.
Definitions
The type of proofs that a functor is split essentially surjective
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where is-split-essentially-surjective-functor-Precategory : UU (l1 ⊔ l3 ⊔ l4) is-split-essentially-surjective-functor-Precategory = (y : obj-Precategory D) → essential-fiber-functor-Precategory C D F y obj-is-split-essentially-surjective-functor-Precategory : is-split-essentially-surjective-functor-Precategory → obj-Precategory D → obj-Precategory C obj-is-split-essentially-surjective-functor-Precategory is-split-ess-surj-F y = pr1 (is-split-ess-surj-F y) iso-is-split-essentially-surjective-functor-Precategory : ( is-split-ess-surj-F : is-split-essentially-surjective-functor-Precategory) → (y : obj-Precategory D) → iso-Precategory D ( obj-functor-Precategory C D F ( obj-is-split-essentially-surjective-functor-Precategory ( is-split-ess-surj-F) ( y))) ( y) iso-is-split-essentially-surjective-functor-Precategory is-split-ess-surj-F y = pr2 (is-split-ess-surj-F y)
We also record a variant with the opposite variance:
is-split-essentially-surjective-functor-Precategory' : UU (l1 ⊔ l3 ⊔ l4) is-split-essentially-surjective-functor-Precategory' = (y : obj-Precategory D) → essential-fiber-functor-Precategory' C D F y obj-is-split-essentially-surjective-functor-Precategory' : is-split-essentially-surjective-functor-Precategory' → obj-Precategory D → obj-Precategory C obj-is-split-essentially-surjective-functor-Precategory' is-split-ess-surj-F' y = pr1 (is-split-ess-surj-F' y) iso-is-split-essentially-surjective-functor-Precategory' : ( is-split-ess-surj-F' : is-split-essentially-surjective-functor-Precategory') → (y : obj-Precategory D) → iso-Precategory D ( y) ( obj-functor-Precategory C D F ( obj-is-split-essentially-surjective-functor-Precategory' ( is-split-ess-surj-F') ( y))) iso-is-split-essentially-surjective-functor-Precategory' is-split-ess-surj-F' y = pr2 (is-split-ess-surj-F' y)
The type of split essentially surjective functors
split-essentially-surjective-functor-Precategory : {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) split-essentially-surjective-functor-Precategory C D = Σ ( functor-Precategory C D) ( is-split-essentially-surjective-functor-Precategory C D) module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : split-essentially-surjective-functor-Precategory C D) where functor-split-essentially-surjective-functor-Precategory : functor-Precategory C D functor-split-essentially-surjective-functor-Precategory = pr1 F is-split-essentially-surjective-split-essentially-surjective-functor-Precategory : is-split-essentially-surjective-functor-Precategory C D ( functor-split-essentially-surjective-functor-Precategory) is-split-essentially-surjective-split-essentially-surjective-functor-Precategory = pr2 F obj-split-essentially-surjective-functor-Precategory : obj-Precategory C → obj-Precategory D obj-split-essentially-surjective-functor-Precategory = obj-functor-Precategory C D ( functor-split-essentially-surjective-functor-Precategory) hom-split-essentially-surjective-functor-Precategory : {x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D ( obj-split-essentially-surjective-functor-Precategory x) ( obj-split-essentially-surjective-functor-Precategory y) hom-split-essentially-surjective-functor-Precategory = hom-functor-Precategory C D ( functor-split-essentially-surjective-functor-Precategory)
Properties
Split essentially surjective functors are essentially surjective
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where is-essentially-surjective-is-split-essentially-surjective-functor-Precategory : (F : functor-Precategory C D) → is-split-essentially-surjective-functor-Precategory C D F → is-essentially-surjective-functor-Precategory C D F is-essentially-surjective-is-split-essentially-surjective-functor-Precategory F is-split-ess-surj-F = unit-trunc-Prop ∘ is-split-ess-surj-F essentially-surjective-functor-split-essentially-surjective-functor-Precategory : split-essentially-surjective-functor-Precategory C D → essentially-surjective-functor-Precategory C D essentially-surjective-functor-split-essentially-surjective-functor-Precategory = tot ( is-essentially-surjective-is-split-essentially-surjective-functor-Precategory)
Being split essentially surjective is a property of fully faithful functors when the codomain is a category
This remains to be shown. This is Lemma 6.8 of Univalent Categories and the Rezk completion.
References
- [AKS15]
- Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.
External links
- Essential Fibres at 1lab
- split essentially surjective functor at Lab
A wikidata identifier was not available for this concept.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).