Split essentially surjective functors between precategories

Content created by Fredrik Bakke.

Created on 2023-11-01.
Last modified on 2024-03-12.

module category-theory.split-essentially-surjective-functors-precategories where
Imports
open import category-theory.essential-fibers-of-functors-precategories
open import category-theory.essentially-surjective-functors-precategories
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.propositional-truncations
open import foundation.universe-levels

Idea

A functor F : C → D between precategories is split essentially surjective if there is a section of the essential fiber over every object of D.

Definitions

The type of proofs that a functor is split essentially surjective

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : functor-Precategory C D)
  where

  is-split-essentially-surjective-functor-Precategory : UU (l1  l3  l4)
  is-split-essentially-surjective-functor-Precategory =
    (y : obj-Precategory D)  essential-fiber-functor-Precategory C D F y

  obj-is-split-essentially-surjective-functor-Precategory :
    is-split-essentially-surjective-functor-Precategory 
    obj-Precategory D  obj-Precategory C
  obj-is-split-essentially-surjective-functor-Precategory
    is-split-ess-surj-F y =
    pr1 (is-split-ess-surj-F y)

  iso-is-split-essentially-surjective-functor-Precategory :
    ( is-split-ess-surj-F :
        is-split-essentially-surjective-functor-Precategory) 
    (y : obj-Precategory D) 
    iso-Precategory D
      ( obj-functor-Precategory C D F
        ( obj-is-split-essentially-surjective-functor-Precategory
          ( is-split-ess-surj-F)
          ( y)))
      ( y)
  iso-is-split-essentially-surjective-functor-Precategory
    is-split-ess-surj-F y =
    pr2 (is-split-ess-surj-F y)

We also record a variant with the opposite variance:

  is-split-essentially-surjective-functor-Precategory' : UU (l1  l3  l4)
  is-split-essentially-surjective-functor-Precategory' =
    (y : obj-Precategory D)  essential-fiber-functor-Precategory' C D F y

  obj-is-split-essentially-surjective-functor-Precategory' :
    is-split-essentially-surjective-functor-Precategory' 
    obj-Precategory D  obj-Precategory C
  obj-is-split-essentially-surjective-functor-Precategory'
    is-split-ess-surj-F' y =
    pr1 (is-split-ess-surj-F' y)

  iso-is-split-essentially-surjective-functor-Precategory' :
    ( is-split-ess-surj-F' :
        is-split-essentially-surjective-functor-Precategory') 
    (y : obj-Precategory D) 
    iso-Precategory D
      ( y)
      ( obj-functor-Precategory C D F
        ( obj-is-split-essentially-surjective-functor-Precategory'
          ( is-split-ess-surj-F')
          ( y)))
  iso-is-split-essentially-surjective-functor-Precategory'
    is-split-ess-surj-F' y =
    pr2 (is-split-ess-surj-F' y)

The type of split essentially surjective functors

split-essentially-surjective-functor-Precategory :
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4) 
  UU (l1  l2  l3  l4)
split-essentially-surjective-functor-Precategory C D =
  Σ ( functor-Precategory C D)
    ( is-split-essentially-surjective-functor-Precategory C D)

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : split-essentially-surjective-functor-Precategory C D)
  where

  functor-split-essentially-surjective-functor-Precategory :
    functor-Precategory C D
  functor-split-essentially-surjective-functor-Precategory = pr1 F

  is-split-essentially-surjective-split-essentially-surjective-functor-Precategory :
    is-split-essentially-surjective-functor-Precategory C D
      ( functor-split-essentially-surjective-functor-Precategory)
  is-split-essentially-surjective-split-essentially-surjective-functor-Precategory =
    pr2 F

  obj-split-essentially-surjective-functor-Precategory :
    obj-Precategory C  obj-Precategory D
  obj-split-essentially-surjective-functor-Precategory =
    obj-functor-Precategory C D
      ( functor-split-essentially-surjective-functor-Precategory)

  hom-split-essentially-surjective-functor-Precategory :
    {x y : obj-Precategory C} 
    hom-Precategory C x y 
    hom-Precategory D
      ( obj-split-essentially-surjective-functor-Precategory x)
      ( obj-split-essentially-surjective-functor-Precategory y)
  hom-split-essentially-surjective-functor-Precategory =
    hom-functor-Precategory C D
      ( functor-split-essentially-surjective-functor-Precategory)

Properties

Split essentially surjective functors are essentially surjective

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  where

  is-essentially-surjective-is-split-essentially-surjective-functor-Precategory :
    (F : functor-Precategory C D) 
    is-split-essentially-surjective-functor-Precategory C D F 
    is-essentially-surjective-functor-Precategory C D F
  is-essentially-surjective-is-split-essentially-surjective-functor-Precategory
    F is-split-ess-surj-F =
    unit-trunc-Prop  is-split-ess-surj-F

  essentially-surjective-functor-split-essentially-surjective-functor-Precategory :
    split-essentially-surjective-functor-Precategory C D 
    essentially-surjective-functor-Precategory C D
  essentially-surjective-functor-split-essentially-surjective-functor-Precategory =
    tot
      ( is-essentially-surjective-is-split-essentially-surjective-functor-Precategory)

Being split essentially surjective is a property of fully faithful functors when the codomain is a category

This remains to be shown. This is Lemma 6.8 of Univalent Categories and the Rezk completion.

References

[AKS15]
Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.

A wikidata identifier was not available for this concept.

Recent changes