Similarity of elements in preorders
Content created by Fredrik Bakke.
Created on 2025-10-25.
Last modified on 2025-10-25.
module order-theory.similarity-of-elements-preorders where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.reflexive-relations open import foundation.universe-levels open import order-theory.preorders
Idea
Two elements x and y of a preorder P are said
to be
similar¶
if both x ≤ y and y ≤ x hold.
In informal writing we will use the notation x ≈ y to assert that x and y
are similar elements in a preorder P.
Definitions
module _ {l1 l2 : Level} (P : Preorder l1 l2) where sim-prop-Preorder : (x y : type-Preorder P) → Prop l2 sim-prop-Preorder x y = product-Prop (leq-prop-Preorder P x y) (leq-prop-Preorder P y x) sim-Preorder : (x y : type-Preorder P) → UU l2 sim-Preorder x y = type-Prop (sim-prop-Preorder x y) is-prop-sim-Preorder : (x y : type-Preorder P) → is-prop (sim-Preorder x y) is-prop-sim-Preorder x y = is-prop-type-Prop (sim-prop-Preorder x y)
Properties
The similarity relation is reflexive
module _ {l1 l2 : Level} (P : Preorder l1 l2) where refl-sim-Preorder : is-reflexive-Relation-Prop (sim-prop-Preorder P) refl-sim-Preorder x = refl-leq-Preorder P x , refl-leq-Preorder P x
The similarity relation is transitive
module _ {l1 l2 : Level} (P : Preorder l1 l2) where transitive-sim-Preorder : is-transitive-Relation-Prop (sim-prop-Preorder P) transitive-sim-Preorder x y z H K = ( transitive-leq-Preorder P x y z (pr1 H) (pr1 K) , transitive-leq-Preorder P z y x (pr2 K) (pr2 H))
The similarity relation is symmetric
module _ {l1 l2 : Level} (P : Preorder l1 l2) where symmetric-sim-Preorder : is-symmetric-Relation-Prop (sim-prop-Preorder P) symmetric-sim-Preorder _ _ H = (pr2 H , pr1 H)
Equal elements are similar
module _ {l1 l2 : Level} (P : Preorder l1 l2) where sim-eq-Preorder : {x y : type-Preorder P} → x = y → sim-Preorder P x y sim-eq-Preorder {x} refl = refl-sim-Preorder P x
Recent changes
- 2025-10-25. Fredrik Bakke. Logic, equality, apartness, and compactness (#1264).