The simplex category

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-10-16.
Last modified on 2024-03-11.

module category-theory.simplex-category where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.precategories

open import elementary-number-theory.inequality-standard-finite-types
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.universe-levels

open import order-theory.order-preserving-maps-posets

Idea

The simplex category is the category consisting of inhabited finite total orders and order-preserving maps. However, we define it as the category whose objects are natural numbers and whose hom-sets hom n m are order-preserving maps between the standard finite types Fin (succ-ℕ n) to Fin (succ-ℕ m) equipped with the standard ordering, and then show that it is equivalent to the former.

Definition

The simplex precategory

obj-simplex-Category : UU lzero
obj-simplex-Category = 

hom-set-simplex-Category :
  obj-simplex-Category  obj-simplex-Category  Set lzero
hom-set-simplex-Category n m =
  hom-set-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m))

hom-simplex-Category :
  obj-simplex-Category  obj-simplex-Category  UU lzero
hom-simplex-Category n m = type-Set (hom-set-simplex-Category n m)

comp-hom-simplex-Category :
  {n m r : obj-simplex-Category} 
  hom-simplex-Category m r  hom-simplex-Category n m  hom-simplex-Category n r
comp-hom-simplex-Category {n} {m} {r} =
  comp-hom-Poset
    ( Fin-Poset (succ-ℕ n))
    ( Fin-Poset (succ-ℕ m))
    ( Fin-Poset (succ-ℕ r))

associative-comp-hom-simplex-Category :
  {n m r s : obj-simplex-Category}
  (h : hom-simplex-Category r s)
  (g : hom-simplex-Category m r)
  (f : hom-simplex-Category n m) 
  comp-hom-simplex-Category {n} {m} {s}
    ( comp-hom-simplex-Category {m} {r} {s} h g)
    ( f) 
  comp-hom-simplex-Category {n} {r} {s}
    ( h)
    ( comp-hom-simplex-Category {n} {m} {r} g f)
associative-comp-hom-simplex-Category {n} {m} {r} {s} =
  associative-comp-hom-Poset
    ( Fin-Poset (succ-ℕ n))
    ( Fin-Poset (succ-ℕ m))
    ( Fin-Poset (succ-ℕ r))
    ( Fin-Poset (succ-ℕ s))

involutive-eq-associative-comp-hom-simplex-Category :
  {n m r s : obj-simplex-Category}
  (h : hom-simplex-Category r s)
  (g : hom-simplex-Category m r)
  (f : hom-simplex-Category n m) 
  comp-hom-simplex-Category {n} {m} {s}
    ( comp-hom-simplex-Category {m} {r} {s} h g)
    ( f) =ⁱ
  comp-hom-simplex-Category {n} {r} {s}
    ( h)
    ( comp-hom-simplex-Category {n} {m} {r} g f)
involutive-eq-associative-comp-hom-simplex-Category {n} {m} {r} {s} =
  involutive-eq-associative-comp-hom-Poset
    ( Fin-Poset (succ-ℕ n))
    ( Fin-Poset (succ-ℕ m))
    ( Fin-Poset (succ-ℕ r))
    ( Fin-Poset (succ-ℕ s))

associative-composition-operation-simplex-Category :
  associative-composition-operation-binary-family-Set hom-set-simplex-Category
pr1 associative-composition-operation-simplex-Category {n} {m} {r} =
  comp-hom-simplex-Category {n} {m} {r}
pr2 associative-composition-operation-simplex-Category {n} {m} {r} {s} =
  involutive-eq-associative-comp-hom-simplex-Category {n} {m} {r} {s}

id-hom-simplex-Category : (n : obj-simplex-Category)  hom-simplex-Category n n
id-hom-simplex-Category n = id-hom-Poset (Fin-Poset (succ-ℕ n))

left-unit-law-comp-hom-simplex-Category :
  {n m : obj-simplex-Category} (f : hom-simplex-Category n m) 
  comp-hom-simplex-Category {n} {m} {m} (id-hom-simplex-Category m) f  f
left-unit-law-comp-hom-simplex-Category {n} {m} =
  left-unit-law-comp-hom-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m))

right-unit-law-comp-hom-simplex-Category :
  {n m : obj-simplex-Category} (f : hom-simplex-Category n m) 
  comp-hom-simplex-Category {n} {n} {m} f (id-hom-simplex-Category n)  f
right-unit-law-comp-hom-simplex-Category {n} {m} =
  right-unit-law-comp-hom-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m))

is-unital-composition-operation-simplex-Category :
  is-unital-composition-operation-binary-family-Set
    ( hom-set-simplex-Category)
    ( comp-hom-simplex-Category)
pr1 is-unital-composition-operation-simplex-Category = id-hom-simplex-Category
pr1 (pr2 is-unital-composition-operation-simplex-Category) {n} {m} =
  left-unit-law-comp-hom-simplex-Category {n} {m}
pr2 (pr2 is-unital-composition-operation-simplex-Category) {n} {m} =
  right-unit-law-comp-hom-simplex-Category {n} {m}

simplex-Precategory : Precategory lzero lzero
pr1 simplex-Precategory = obj-simplex-Category
pr1 (pr2 simplex-Precategory) = hom-set-simplex-Category
pr1 (pr2 (pr2 simplex-Precategory)) =
  associative-composition-operation-simplex-Category
pr2 (pr2 (pr2 simplex-Precategory)) =
  is-unital-composition-operation-simplex-Category

The simplex category

It remains to be formalized that the simplex category is univalent.

Properties

The simplex category is equivalent to the category of inhabited finite total orders

This remains to be formalized.

The simplex category has a face map and degeneracy unique factorization system

This remains to be formalized.

The simplex category has a degeneracy and face map unique factorization system

This remains to be formalized.

There is a unique nontrivial involution on the simplex category

This remains to be formalized.

Recent changes