The mediant fraction of two integer fractions
Content created by malarbol and Fredrik Bakke.
Created on 2024-02-27.
Last modified on 2024-03-28.
module elementary-number-theory.mediant-integer-fractions where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.addition-positive-and-negative-integers open import elementary-number-theory.cross-multiplication-difference-integer-fractions open import elementary-number-theory.difference-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.multiplication-integers open import foundation.dependent-pair-types open import foundation.identity-types
Idea
The mediant¶ of two fractions is the quotient of the sum of the numerators by the sum of the denominators.
Definitions
The mediant of two fractions
mediant-fraction-ℤ : fraction-ℤ → fraction-ℤ → fraction-ℤ mediant-fraction-ℤ (a , b) (c , d) = (add-ℤ a c , add-positive-ℤ b d)
Properties
The mediant preserves the cross-multiplication difference
cross-mul-diff-left-mediant-fraction-ℤ : (x y : fraction-ℤ) → Id ( cross-mul-diff-fraction-ℤ x y) ( cross-mul-diff-fraction-ℤ x ( mediant-fraction-ℤ x y)) cross-mul-diff-left-mediant-fraction-ℤ (nx , dx , px) (ny , dy , py) = equational-reasoning (ny *ℤ dx -ℤ nx *ℤ dy) = (nx *ℤ dx +ℤ ny *ℤ dx) -ℤ (nx *ℤ dx +ℤ nx *ℤ dy) by inv ( left-translation-diff-ℤ ( mul-ℤ ny dx) ( mul-ℤ nx dy) ( mul-ℤ nx dx)) = (nx +ℤ ny) *ℤ dx -ℤ nx *ℤ (dx +ℤ dy) by ap-diff-ℤ ( inv (right-distributive-mul-add-ℤ nx ny dx)) ( inv (left-distributive-mul-add-ℤ nx dx dy)) cross-mul-diff-right-mediant-fraction-ℤ : (x y : fraction-ℤ) → Id ( cross-mul-diff-fraction-ℤ x y) ( cross-mul-diff-fraction-ℤ (mediant-fraction-ℤ x y) y) cross-mul-diff-right-mediant-fraction-ℤ (nx , dx , px) (ny , dy , py) = equational-reasoning (ny *ℤ dx -ℤ nx *ℤ dy) = (ny *ℤ dx +ℤ ny *ℤ dy) -ℤ (nx *ℤ dy +ℤ ny *ℤ dy) by inv ( right-translation-diff-ℤ ( mul-ℤ ny dx) ( mul-ℤ nx dy) ( mul-ℤ ny dy)) = ny *ℤ (dx +ℤ dy) -ℤ (nx +ℤ ny) *ℤ dy by ap-diff-ℤ ( inv (left-distributive-mul-add-ℤ ny dx dy)) ( inv (right-distributive-mul-add-ℤ nx ny dy))
External links
- Mediant fraction at Wikipedia
Recent changes
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).
- 2024-02-27. malarbol. Rational real numbers (#1034).