Monomorphisms of concrete groups
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-07-09.
Last modified on 2023-11-24.
module group-theory.monomorphisms-concrete-groups where
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.propositions open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.homomorphisms-concrete-groups
Idea
A monomorphism of concrete groups from G
to H
is a faithful pointed map BH
→∗ BG. Recall that a map is said to be faithful if it induces embeddings on
identity types. In particular, any faithful pointed map BH →∗ BG induces an
embedding ΩBH → ΩBG, i.e., an inclusion of the underlying groups of a concrete
group.
module _ {l1 l2 : Level} (l3 : Level) (G : Concrete-Group l1) (H : Concrete-Group l2) (f : hom-Concrete-Group G H) where is-mono-prop-hom-Concrete-Group : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-prop-hom-Concrete-Group = Π-Prop ( Concrete-Group l3) ( λ F → is-emb-Prop (comp-hom-Concrete-Group F G H f)) is-mono-hom-Concrete-Group : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono-hom-Concrete-Group = type-Prop is-mono-prop-hom-Concrete-Group is-prop-is-mono-hom-Concrete-Group : is-prop is-mono-hom-Concrete-Group is-prop-is-mono-hom-Concrete-Group = is-prop-type-Prop is-mono-prop-hom-Concrete-Group module _ {l1 : Level} (l2 : Level) (G : Concrete-Group l1) where mono-Concrete-Group : UU (l1 ⊔ lsuc l2) mono-Concrete-Group = Σ ( Concrete-Group l2) ( λ H → Σ (hom-Concrete-Group H G) λ f → is-mono-hom-Concrete-Group l2 H G f)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-05-03. Fredrik Bakke. Define the smash product of pointed types and refactor pointed types (#583).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).