Maps from small to large precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2023-11-24.
module category-theory.maps-from-small-to-large-precategories where
Imports
open import category-theory.large-precategories open import category-theory.maps-precategories open import category-theory.precategories open import foundation.equivalences open import foundation.identity-types open import foundation.torsorial-type-families open import foundation.universe-levels
Idea
A map from a (small) precategory C
to
a large precategory D
consists of:
- a map
F₀ : C → D
on objects at a chosen universe levelγ
, - a map
F₁ : hom x y → hom (F₀ x) (F₀ y)
on morphisms.
Definition
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where map-Small-Large-Precategory : (γ : Level) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) map-Small-Large-Precategory γ = map-Precategory C (precategory-Large-Precategory D γ) obj-map-Small-Large-Precategory : {γ : Level} → map-Small-Large-Precategory γ → obj-Precategory C → obj-Large-Precategory D γ obj-map-Small-Large-Precategory {γ} = obj-map-Precategory C (precategory-Large-Precategory D γ) hom-map-Small-Large-Precategory : {γ : Level} → (F : map-Small-Large-Precategory γ) → { X Y : obj-Precategory C} → hom-Precategory C X Y → hom-Large-Precategory D ( obj-map-Small-Large-Precategory F X) ( obj-map-Small-Large-Precategory F Y) hom-map-Small-Large-Precategory {γ} = hom-map-Precategory C (precategory-Large-Precategory D γ)
Properties
Characterization of equality of maps from small to large precategories
module _ {l1 l2 γ : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where htpy-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) htpy-map-Small-Large-Precategory = htpy-map-Precategory C (precategory-Large-Precategory D γ) htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → (f = g) → htpy-map-Small-Large-Precategory f g htpy-eq-map-Small-Large-Precategory = htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) is-torsorial-htpy-map-Small-Large-Precategory : (f : map-Small-Large-Precategory C D γ) → is-torsorial (htpy-map-Small-Large-Precategory f) is-torsorial-htpy-map-Small-Large-Precategory = is-torsorial-htpy-map-Precategory C (precategory-Large-Precategory D γ) is-equiv-htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → is-equiv (htpy-eq-map-Small-Large-Precategory f g) is-equiv-htpy-eq-map-Small-Large-Precategory = is-equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) equiv-htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → (f = g) ≃ htpy-map-Small-Large-Precategory f g equiv-htpy-eq-map-Small-Large-Precategory = equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) eq-htpy-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → htpy-map-Small-Large-Precategory f g → (f = g) eq-htpy-map-Small-Large-Precategory = eq-htpy-map-Precategory C (precategory-Large-Precategory D γ)
See also
- Functors from small to large precategories
- The precategory of maps and natural transformations from small to large precategories
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-09-27. Fredrik Bakke. Presheaf categories (#801).