The universal property of pushouts

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Vojtěch Štěpančík and Tom de Jong.

Created on 2022-07-29.
Last modified on 2024-03-09.

{-# OPTIONS --lossy-unification #-}

module synthetic-homotopy-theory.universal-property-pushouts where
Imports
open import foundation.action-on-identifications-functions
open import foundation.commuting-cubes-of-maps
open import foundation.commuting-squares-of-maps
open import foundation.cones-over-cospan-diagrams
open import foundation.contractible-maps
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-functions
open import foundation.pullbacks
open import foundation.standard-pullbacks
open import foundation.subtype-identity-principle
open import foundation.transport-along-identifications
open import foundation.universal-property-equivalences
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import synthetic-homotopy-theory.cocones-under-spans
open import synthetic-homotopy-theory.pullback-property-pushouts

Idea

Consider a span 𝒮 of types

      f     g
  A <--- S ---> B.

and a type X equipped with a cocone structure of S into X. The universal property of the pushout of 𝒮 asserts that X is the initial type equipped with such cocone structure. In other words, the universal property of the pushout of 𝒮 asserts that the following evaluation map is an equivalence:

  (X → Y) → cocone 𝒮 Y.

There are several ways of asserting a condition equivalent to the universal property of pushouts. The statements and proofs of mutual equivalence may be found in the following table:

ConceptLocation
(1) Universal property of pushouts
characterizes functions out of a pushout
synthetic-homotopy-theory.universal-property-pushouts
(2) Dependent universal property of pushouts
characterizes dependent functions out of a pushout
synthetic-homotopy-theory.dependent-universal-property-pushouts
(3) Pullback property of pushouts
states the universal property in terms of pullbacks
synthetic-homotopy-theory.pullback-property-pushouts
(4) Dependent pullback property of pushouts
states the dependent universal property in terms of pullbacks
synthetic-homotopy-theory.dependent-pullback-property-pushouts
(5) Induction principle of pushouts
is the induction principle of pushouts seen as higher inductive types
synthetic-homotopy-theory.induction-principle-pushouts
(1) → (2)dependent-universal-property-universal-property-pushouts
(2) → (1)universal-property-dependent-universal-property-pushout
(1) → (3)pullback-property-pushout-universal-property-pushout
(3) → (1)universal-property-pushout-pullback-property-pushout
(2) → (4)dependent-pullback-property-dependent-universal-property-pushout
(4) → (2)dependent-universal-property-dependent-pullback-property-pushout
(3) → (4)dependent-pullback-property-pullback-property-pushout
(4) → (3)pullback-property-dependent-pullback-property-pushout
(2) → (5)induction-principle-pushout-dependent-universal-property-pushout
(5) → (2)dependent-universal-property-pushout-induction-principle-pushout

Definition

The universal property of pushouts

universal-property-pushout :
  {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
  (f : S  A) (g : S  B) {X : UU l4} 
  cocone f g X  UU (l1  l2  l3  l4  lsuc l)
universal-property-pushout l f g c =
  (Y : UU l)  is-equiv (cocone-map f g {Y = Y} c)

module _
  {l1 l2 l3 l4 l5 : Level}
  {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
  (f : S  A) (g : S  B) (c : cocone f g X)
  (up-c : {l : Level}  universal-property-pushout l f g c)
  (d : cocone f g Y)
  where

  map-universal-property-pushout : X  Y
  map-universal-property-pushout = map-inv-is-equiv (up-c Y) d

  htpy-cocone-map-universal-property-pushout :
    htpy-cocone f g (cocone-map f g c map-universal-property-pushout) d
  htpy-cocone-map-universal-property-pushout =
    htpy-eq-cocone
      ( f)
      ( g)
      ( cocone-map f g c map-universal-property-pushout)
      ( d)
      ( is-section-map-inv-is-equiv (up-c Y) d)

  horizontal-htpy-cocone-map-universal-property-pushout :
    map-universal-property-pushout  horizontal-map-cocone f g c ~
    horizontal-map-cocone f g d
  horizontal-htpy-cocone-map-universal-property-pushout =
    horizontal-htpy-cocone
      ( f)
      ( g)
      ( cocone-map f g c map-universal-property-pushout)
      ( d)
      ( htpy-cocone-map-universal-property-pushout)

  vertical-htpy-cocone-map-universal-property-pushout :
    map-universal-property-pushout  vertical-map-cocone f g c ~
    vertical-map-cocone f g d
  vertical-htpy-cocone-map-universal-property-pushout =
    vertical-htpy-cocone
      ( f)
      ( g)
      ( cocone-map f g c map-universal-property-pushout)
      ( d)
      ( htpy-cocone-map-universal-property-pushout)

  coherence-htpy-cocone-map-universal-property-pushout :
    statement-coherence-htpy-cocone f g
      ( cocone-map f g c map-universal-property-pushout)
      ( d)
      ( horizontal-htpy-cocone-map-universal-property-pushout)
      ( vertical-htpy-cocone-map-universal-property-pushout)
  coherence-htpy-cocone-map-universal-property-pushout =
    coherence-htpy-cocone
      ( f)
      ( g)
      ( cocone-map f g c map-universal-property-pushout)
      ( d)
      ( htpy-cocone-map-universal-property-pushout)

  uniqueness-map-universal-property-pushout :
    is-contr ( Σ (X  Y)  h  htpy-cocone f g (cocone-map f g c h) d))
  uniqueness-map-universal-property-pushout =
    is-contr-is-equiv'
      ( fiber (cocone-map f g c) d)
      ( tot  h  htpy-eq-cocone f g (cocone-map f g c h) d))
      ( is-equiv-tot-is-fiberwise-equiv
        ( λ h  is-equiv-htpy-eq-cocone f g (cocone-map f g c h) d))
      ( is-contr-map-is-equiv (up-c Y) d)

Properties

The 3-for-2 property of pushouts

module _
  { l1 l2 l3 l4 l5 : Level}
  { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
  ( f : S  A) (g : S  B) (c : cocone f g X) (d : cocone f g Y)
  ( h : X  Y) (KLM : htpy-cocone f g (cocone-map f g c h) d)
  where

  triangle-map-cocone :
    { l6 : Level} (Z : UU l6) 
    ( cocone-map f g d) ~ (cocone-map f g c  precomp h Z)
  triangle-map-cocone Z k =
    inv
      ( ( cocone-map-comp f g c h k) 
        ( ap
          ( λ t  cocone-map f g t k)
          ( eq-htpy-cocone f g (cocone-map f g c h) d KLM)))

  is-equiv-up-pushout-up-pushout :
    ( up-c : {l : Level}  universal-property-pushout l f g c) 
    ( up-d : {l : Level}  universal-property-pushout l f g d) 
    is-equiv h
  is-equiv-up-pushout-up-pushout up-c up-d =
    is-equiv-is-equiv-precomp h
      ( λ Z 
        is-equiv-top-map-triangle
          ( cocone-map f g d)
          ( cocone-map f g c)
          ( precomp h Z)
          ( triangle-map-cocone Z)
          ( up-c Z)
          ( up-d Z))

  up-pushout-up-pushout-is-equiv :
    is-equiv h 
    ( up-c : {l : Level}  universal-property-pushout l f g c) 
    {l : Level}  universal-property-pushout l f g d
  up-pushout-up-pushout-is-equiv is-equiv-h up-c Z =
    is-equiv-left-map-triangle
      ( cocone-map f g d)
      ( cocone-map f g c)
      ( precomp h Z)
      ( triangle-map-cocone Z)
      ( is-equiv-precomp-is-equiv h is-equiv-h Z)
      ( up-c Z)

  up-pushout-is-equiv-up-pushout :
    ( up-d : {l : Level}  universal-property-pushout l f g d) 
    is-equiv h 
    {l : Level}  universal-property-pushout l f g c
  up-pushout-is-equiv-up-pushout up-d is-equiv-h Z =
    is-equiv-right-map-triangle
      ( cocone-map f g d)
      ( cocone-map f g c)
      ( precomp h Z)
      ( triangle-map-cocone Z)
      ( up-d Z)
      ( is-equiv-precomp-is-equiv h is-equiv-h Z)

Pushouts are uniquely unique

uniquely-unique-pushout :
  { l1 l2 l3 l4 l5 : Level}
  { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
  ( f : S  A) (g : S  B) (c : cocone f g X) (d : cocone f g Y) 
  ( up-c : {l : Level}  universal-property-pushout l f g c) 
  ( up-d : {l : Level}  universal-property-pushout l f g d) 
  is-contr
    ( Σ (X  Y)  e  htpy-cocone f g (cocone-map f g c (map-equiv e)) d))
uniquely-unique-pushout f g c d up-c up-d =
  is-torsorial-Eq-subtype
    ( uniqueness-map-universal-property-pushout f g c up-c d)
    ( is-property-is-equiv)
    ( map-universal-property-pushout f g c up-c d)
    ( htpy-cocone-map-universal-property-pushout f g c up-c d)
    ( is-equiv-up-pushout-up-pushout f g c d
      ( map-universal-property-pushout f g c up-c d)
      ( htpy-cocone-map-universal-property-pushout f g c up-c d)
      ( up-c)
      ( up-d))

The universal property of pushouts is equivalent to the pullback property of pushouts

In order to show that the universal property of pushouts is equivalent to the pullback property, we show that the maps cocone-map and the gap map fit in a commuting triangle, where the third map is an equivalence. The claim then follows from the 3-for-2 property of equivalences.

triangle-pullback-property-pushout-universal-property-pushout :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2}
  {B : UU l3} (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X) 
  {l : Level} (Y : UU l) 
  ( cocone-map f g c) ~
  ( ( tot  i'  tot  j'  htpy-eq))) 
    ( gap (_∘ f) (_∘ g) (cone-pullback-property-pushout f g c Y)))
triangle-pullback-property-pushout-universal-property-pushout f g c Y h =
    eq-pair-eq-fiber
      ( eq-pair-eq-fiber
        ( inv (is-section-eq-htpy (h ·l coherence-square-cocone f g c))))

pullback-property-pushout-universal-property-pushout :
  {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2}
  {B : UU l3} (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X) 
  universal-property-pushout l f g c  pullback-property-pushout l f g c
pullback-property-pushout-universal-property-pushout f g c up-c Y =
  is-equiv-top-map-triangle
    ( cocone-map f g c)
    ( tot  i'  tot  j'  htpy-eq)))
    ( gap (_∘ f) (_∘ g) (cone-pullback-property-pushout f g c Y))
    ( triangle-pullback-property-pushout-universal-property-pushout f g c Y)
    ( is-equiv-tot-is-fiberwise-equiv
      ( λ i' 
        is-equiv-tot-is-fiberwise-equiv  j'  funext (i'  f) (j'  g))))
    ( up-c Y)

universal-property-pushout-pullback-property-pushout :
  {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2}
  {B : UU l3} (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X) 
  pullback-property-pushout l f g c  universal-property-pushout l f g c
universal-property-pushout-pullback-property-pushout l f g c pb-c Y =
  is-equiv-left-map-triangle
    ( cocone-map f g c)
    ( tot  i'  tot  j'  htpy-eq)))
    ( gap (_∘ f) (_∘ g) (cone-pullback-property-pushout f g c Y))
    ( triangle-pullback-property-pushout-universal-property-pushout f g c Y)
    ( pb-c Y)
    ( is-equiv-tot-is-fiberwise-equiv
      ( λ i' 
        is-equiv-tot-is-fiberwise-equiv  j'  funext (i'  f) (j'  g))))

If the vertical map of a span is an equivalence, then the vertical map of a cocone on it is an equivalence if and only if the cocone is a pushout

is-equiv-universal-property-pushout :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (f : S  A) (g : S  B) (c : cocone f g C) 
  is-equiv f 
  ({l : Level}  universal-property-pushout l f g c) 
  is-equiv (vertical-map-cocone f g c)
is-equiv-universal-property-pushout f g (i , j , H) is-equiv-f up-c =
  is-equiv-is-equiv-precomp j
    ( λ T 
      is-equiv-horizontal-map-is-pullback
        ( _∘ f)
        ( _∘ g)
        ( cone-pullback-property-pushout f g (i , j , H) T)
        ( is-equiv-precomp-is-equiv f is-equiv-f T)
        ( pullback-property-pushout-universal-property-pushout f g
          ( i , j , H)
          ( up-c)
          ( T)))

equiv-universal-property-pushout :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (e : S  A) (g : S  B) (c : cocone (map-equiv e) g C) 
  ({l : Level}  universal-property-pushout l (map-equiv e) g c) 
  B  C
pr1 (equiv-universal-property-pushout e g c up-c) =
  vertical-map-cocone (map-equiv e) g c
pr2 (equiv-universal-property-pushout e g c up-c) =
  is-equiv-universal-property-pushout
    ( map-equiv e)
    ( g)
    ( c)
    ( is-equiv-map-equiv e)
    ( up-c)

universal-property-pushout-is-equiv :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (f : S  A) (g : S  B) (c : cocone f g C) 
  is-equiv f  is-equiv (vertical-map-cocone f g c) 
  ({l : Level}  universal-property-pushout l f g c)
universal-property-pushout-is-equiv
  f g (i , j , H) is-equiv-f is-equiv-j {l} =
  let c = (i , j , H) in
  universal-property-pushout-pullback-property-pushout l f g c
    ( λ T 
      is-pullback-is-equiv-horizontal-maps
        ( _∘ f)
        ( _∘ g)
        ( cone-pullback-property-pushout f g c T)
        ( is-equiv-precomp-is-equiv f is-equiv-f T)
        ( is-equiv-precomp-is-equiv j is-equiv-j T))

If the horizontal map of a span is an equivalence, then the horizontal map of a cocone on it is an equivalence if and only if the cocone is a pushout

is-equiv-universal-property-pushout' :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (f : S  A) (g : S  B) (c : cocone f g C) 
  is-equiv g 
  ({l : Level}  universal-property-pushout l f g c) 
  is-equiv (horizontal-map-cocone f g c)
is-equiv-universal-property-pushout' f g c is-equiv-g up-c =
  is-equiv-is-equiv-precomp
    ( horizontal-map-cocone f g c)
    ( λ T 
      is-equiv-vertical-map-is-pullback
        ( precomp f T)
        ( precomp g T)
        ( cone-pullback-property-pushout f g c T)
        ( is-equiv-precomp-is-equiv g is-equiv-g T)
        ( pullback-property-pushout-universal-property-pushout f g c up-c T))

equiv-universal-property-pushout' :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (f : S  A) (e : S  B) (c : cocone f (map-equiv e) C) 
  ({l : Level}  universal-property-pushout l f (map-equiv e) c) 
  A  C
pr1 (equiv-universal-property-pushout' f e c up-c) = pr1 c
pr2 (equiv-universal-property-pushout' f e c up-c) =
  is-equiv-universal-property-pushout'
    ( f)
    ( map-equiv e)
    ( c)
    ( is-equiv-map-equiv e)
    ( up-c)

universal-property-pushout-is-equiv' :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
  (f : S  A) (g : S  B) (c : cocone f g C) 
  is-equiv g  is-equiv (pr1 c) 
  ({l : Level}  universal-property-pushout l f g c)
universal-property-pushout-is-equiv' f g (i , j , H) is-equiv-g is-equiv-i {l} =
  let c = (i , j , H) in
  universal-property-pushout-pullback-property-pushout l f g c
    ( λ T 
      is-pullback-is-equiv-vertical-maps
        ( precomp f T)
        ( precomp g T)
        ( cone-pullback-property-pushout f g c T)
        ( is-equiv-precomp-is-equiv g is-equiv-g T)
        ( is-equiv-precomp-is-equiv i is-equiv-i T))

The pushout pasting lemmas

The horizontal pushout pasting lemma

If in the following diagram the left square is a pushout, then the outer rectangle is a pushout if and only if the right square is a pushout.

      g       k
   A ----> B ----> C
   |       |       |
  f|       |       |
   v       v       v
   X ----> Y ----> Z
module _
  { l1 l2 l3 l4 l5 l6 : Level}
  { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  ( f : A  X) (g : A  B) (k : B  C)
  ( c : cocone f g Y) (d : cocone (vertical-map-cocone f g c) k Z)
  ( up-c : {l : Level}  universal-property-pushout l f g c)
  where

  universal-property-pushout-rectangle-universal-property-pushout-right :
    ( {l : Level} 
      universal-property-pushout l (vertical-map-cocone f g c) k d) 
    ( {l : Level} 
      universal-property-pushout l f (k  g) (cocone-comp-horizontal f g k c d))
  universal-property-pushout-rectangle-universal-property-pushout-right
    ( up-d)
    { l} =
    universal-property-pushout-pullback-property-pushout l f
      ( k  g)
      ( cocone-comp-horizontal f g k c d)
      ( λ W 
        tr
          ( is-pullback (precomp f W) (precomp (k  g) W))
          ( inv
            ( eq-htpy-cone
              ( precomp f W)
              ( precomp (k  g) W)
              ( cone-pullback-property-pushout
                ( f)
                ( k  g)
                ( cocone-comp-horizontal f g k c d)
                ( W))
              ( pasting-vertical-cone
                ( precomp f W)
                ( precomp g W)
                ( precomp k W)
                ( cone-pullback-property-pushout f g c W)
                ( cone-pullback-property-pushout
                  ( vertical-map-cocone f g c)
                  ( k)
                  ( d)
                  ( W)))
              ( refl-htpy ,
                refl-htpy ,
                ( right-unit-htpy) ∙h
                ( distributive-precomp-pasting-horizontal-coherence-square-maps
                  ( W)
                  ( g)
                  ( k)
                  ( f)
                  ( vertical-map-cocone f g c)
                  ( vertical-map-cocone (vertical-map-cocone f g c) k d)
                  ( horizontal-map-cocone f g c)
                  ( horizontal-map-cocone (vertical-map-cocone f g c) k d)
                  ( coherence-square-cocone f g c)
                  ( coherence-square-cocone (vertical-map-cocone f g c) k d)))))
          ( is-pullback-rectangle-is-pullback-top-square
            ( precomp f W)
            ( precomp g W)
            ( precomp k W)
            ( cone-pullback-property-pushout f g c W)
            ( cone-pullback-property-pushout (vertical-map-cocone f g c) k d W)
            ( pullback-property-pushout-universal-property-pushout f g c
              ( up-c)
              ( W))
            ( pullback-property-pushout-universal-property-pushout
              ( vertical-map-cocone f g c)
              ( k)
              ( d)
              ( up-d)
              ( W))))

  universal-property-pushout-right-universal-property-pushout-rectangle :
    ( {l : Level} 
      universal-property-pushout
        ( l)
        ( f)
        ( k  g)
        ( cocone-comp-horizontal f g k c d)) 
    ( {l : Level} 
      universal-property-pushout l (vertical-map-cocone f g c) k d)
  universal-property-pushout-right-universal-property-pushout-rectangle
    ( up-r)
    { l} =
    universal-property-pushout-pullback-property-pushout l
      ( vertical-map-cocone f g c)
      ( k)
      ( d)
      ( λ W 
        is-pullback-top-square-is-pullback-rectangle
          ( precomp f W)
          ( precomp g W)
          ( precomp k W)
          ( cone-pullback-property-pushout f g c W)
          ( cone-pullback-property-pushout (vertical-map-cocone f g c) k d W)
          ( pullback-property-pushout-universal-property-pushout f g c
            ( up-c)
            ( W))
          ( tr
            ( is-pullback (precomp f W) (precomp (k  g) W))
            ( eq-htpy-cone
              ( precomp f W)
              ( precomp (k  g) W)
              ( cone-pullback-property-pushout f
                ( k  g)
                ( cocone-comp-horizontal f g k c d)
                ( W))
              ( pasting-vertical-cone
                ( precomp f W)
                ( precomp g W)
                ( precomp k W)
                ( cone-pullback-property-pushout f g c W)
                ( cone-pullback-property-pushout
                  ( vertical-map-cocone f g c)
                  ( k)
                  ( d)
                  ( W)))
              ( refl-htpy ,
                refl-htpy ,
                ( right-unit-htpy) ∙h
                ( distributive-precomp-pasting-horizontal-coherence-square-maps
                  ( W)
                  ( g)
                  ( k)
                  ( f)
                  ( vertical-map-cocone f g c)
                  ( vertical-map-cocone (vertical-map-cocone f g c) k d)
                  ( horizontal-map-cocone f g c)
                  ( horizontal-map-cocone (vertical-map-cocone f g c) k d)
                  ( coherence-square-cocone f g c)
                  ( coherence-square-cocone (vertical-map-cocone f g c) k d))))
            ( pullback-property-pushout-universal-property-pushout f
              ( k  g)
              ( cocone-comp-horizontal f g k c d)
              ( up-r)
              ( W))))

Extending pushouts by equivalences on the left

As a special case of the horizontal pushout pasting lemma we can extend a pushout square by equivalences on the left.

If we have a pushout square on the right, equivalences S' ≃ S and A' ≃ A, and a map f' : S' → A' making the left square commute, then the outer rectangle is again a pushout.

       i       g
   S' ---> S ----> B
   |   ≃   |       |
f' |       | f     |
   v   ≃   v     ⌜ v
   A' ---> A ----> X
       j
module _
  { l1 l2 l3 l4 l5 l6 : Level}
  { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {S' : UU l5} {A' : UU l6}
  ( f : S  A) (g : S  B) (i : S'  S) (j : A'  A) (f' : S'  A')
  ( c : cocone f g X)
  ( up-c : {l : Level}  universal-property-pushout l f g c)
  ( coh : coherence-square-maps i f' f j)
  where

  universal-property-pushout-left-extended-by-equivalences :
    is-equiv i  is-equiv j 
    {l : Level} 
    universal-property-pushout l
      ( f')
      ( g  i)
      ( cocone-comp-horizontal' f' i g f j c coh)
  universal-property-pushout-left-extended-by-equivalences ie je =
    universal-property-pushout-rectangle-universal-property-pushout-right f' i g
      ( j , f , coh)
      ( c)
      ( universal-property-pushout-is-equiv' f' i (j , f , coh) ie je)
      ( up-c)

  universal-property-pushout-left-extension-by-equivalences :
    {l : Level}  is-equiv i  is-equiv j 
    Σ (cocone f' (g  i) X) (universal-property-pushout l f' (g  i))
  pr1 (universal-property-pushout-left-extension-by-equivalences ie je) =
    cocone-comp-horizontal' f' i g f j c coh
  pr2 (universal-property-pushout-left-extension-by-equivalences ie je) =
    universal-property-pushout-left-extended-by-equivalences ie je

The vertical pushout pasting lemma

If in the following diagram the top square is a pushout, then the outer rectangle is a pushout if and only if the bottom square is a pushout.

       g
   A -----> X
   |        |
  f|        |
   v      ⌜ v
   B -----> Y
   |        |
  k|        |
   v        v
   C -----> Z
module _
  { l1 l2 l3 l4 l5 l6 : Level}
  { A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  ( f : A  B) (g : A  X) (k : B  C)
  ( c : cocone f g Y) (d : cocone k (horizontal-map-cocone f g c) Z)
  ( up-c : {l : Level}  universal-property-pushout l f g c)
  where

  universal-property-pushout-rectangle-universal-property-pushout-top :
    ( {l : Level} 
      universal-property-pushout l k (horizontal-map-cocone f g c) d) 
    ( {l : Level} 
      universal-property-pushout l (k  f) g (cocone-comp-vertical f g k c d))
  universal-property-pushout-rectangle-universal-property-pushout-top
    ( up-d)
    { l} =
    universal-property-pushout-pullback-property-pushout l
      ( k  f)
      ( g)
      ( cocone-comp-vertical f g k c d)
      ( λ W 
        tr
          ( is-pullback (precomp (k  f) W) (precomp g W))
          ( inv
            ( eq-htpy-cone
              ( precomp (k  f) W)
              ( precomp g W)
              ( cone-pullback-property-pushout
                ( k  f)
                ( g)
                ( cocone-comp-vertical f g k c d)
                ( W))
              ( pasting-horizontal-cone
                ( precomp k W)
                ( precomp f W)
                ( precomp g W)
                ( cone-pullback-property-pushout f g c W)
                ( cone-pullback-property-pushout k
                  ( horizontal-map-cocone f g c)
                  ( d)
                  ( W)))
              ( refl-htpy ,
                refl-htpy ,
                ( right-unit-htpy) ∙h
                ( distributive-precomp-pasting-vertical-coherence-square-maps W
                  ( g)
                  ( f)
                  ( vertical-map-cocone f g c)
                  ( horizontal-map-cocone f g c)
                  ( k)
                  ( vertical-map-cocone k (horizontal-map-cocone f g c) d)
                  ( horizontal-map-cocone k (horizontal-map-cocone f g c) d)
                  ( coherence-square-cocone f g c)
                  ( coherence-square-cocone k
                    ( horizontal-map-cocone f g c)
                    ( d))))))
          ( is-pullback-rectangle-is-pullback-left-square
            ( precomp k W)
            ( precomp f W)
            ( precomp g W)
            ( cone-pullback-property-pushout f g c W)
            ( cone-pullback-property-pushout k
              ( horizontal-map-cocone f g c)
              ( d)
              ( W))
            ( pullback-property-pushout-universal-property-pushout f g c
              ( up-c)
              ( W))
            ( pullback-property-pushout-universal-property-pushout k
              ( horizontal-map-cocone f g c)
              ( d)
              ( up-d)
              ( W))))

  universal-property-pushout-top-universal-property-pushout-rectangle :
    ( {l : Level} 
      universal-property-pushout l (k  f) g (cocone-comp-vertical f g k c d)) 
    ( {l : Level} 
      universal-property-pushout l k (horizontal-map-cocone f g c) d)
  universal-property-pushout-top-universal-property-pushout-rectangle
    ( up-r)
    { l} =
    universal-property-pushout-pullback-property-pushout l k
      ( horizontal-map-cocone f g c)
      ( d)
      ( λ W 
        is-pullback-left-square-is-pullback-rectangle
          ( precomp k W)
          ( precomp f W)
          ( precomp g W)
          ( cone-pullback-property-pushout f g c W)
          ( cone-pullback-property-pushout k (horizontal-map-cocone f g c) d W)
          ( pullback-property-pushout-universal-property-pushout f g c up-c W)
          ( tr
            ( is-pullback (precomp (k  f) W) (precomp g W))
            ( eq-htpy-cone
              ( precomp (k  f) W)
              ( precomp g W)
              ( cone-pullback-property-pushout
                ( k  f)
                ( g)
                ( cocone-comp-vertical f g k c d)
                ( W))
              ( pasting-horizontal-cone
                ( precomp k W)
                ( precomp f W)
                ( precomp g W)
                ( cone-pullback-property-pushout f g c W)
                ( cone-pullback-property-pushout k
                  ( horizontal-map-cocone f g c)
                  ( d)
                  ( W)))
              ( refl-htpy ,
                refl-htpy ,
                ( right-unit-htpy) ∙h
                ( distributive-precomp-pasting-vertical-coherence-square-maps W
                  ( g)
                  ( f)
                  ( vertical-map-cocone f g c)
                  ( horizontal-map-cocone f g c)
                  ( k)
                  ( vertical-map-cocone k
                    ( horizontal-map-cocone f g c)
                    ( d))
                  ( horizontal-map-cocone k
                    ( horizontal-map-cocone f g c)
                    ( d))
                  ( coherence-square-cocone f g c)
                  ( coherence-square-cocone k
                    ( horizontal-map-cocone f g c)
                    ( d)))))
            ( pullback-property-pushout-universal-property-pushout (k  f) g
              ( cocone-comp-vertical f g k c d)
              ( up-r)
              ( W))))

Extending pushouts by equivalences at the top

If we have a pushout square on the right, equivalences S' ≃ S and B' ≃ B, and a map g' : S' → B' making the top square commute, then the vertical rectangle is again a pushout. This is a special case of the vertical pushout pasting lemma.

           g'
       S' ---> B'
       |       |
     i | ≃   ≃ | j
       |       |
       v   g   v
       S ----> B
       |       |
     f |       |
       v    ⌜  v
       A ----> X
module _
  { l1 l2 l3 l4 l5 l6 : Level}
  { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {S' : UU l5} {B' : UU l6}
  ( f : S  A) (g : S  B) (i : S'  S) (j : B'  B) (g' : S'  B')
  ( c : cocone f g X)
  ( up-c : {l : Level}  universal-property-pushout l f g c)
  ( coh : coherence-square-maps g' i j g)
  where

  universal-property-pushout-top-extended-by-equivalences :
    is-equiv i  is-equiv j 
    {l : Level} 
    universal-property-pushout l
      ( f  i)
      ( g')
      ( cocone-comp-vertical' i g' j g f c coh)
  universal-property-pushout-top-extended-by-equivalences ie je =
    universal-property-pushout-rectangle-universal-property-pushout-top i g' f
      ( g , j , coh)
      ( c)
      ( universal-property-pushout-is-equiv i g' (g , j , coh) ie je)
      ( up-c)

  universal-property-pushout-top-extension-by-equivalences :
    {l : Level}  is-equiv i  is-equiv j 
    Σ (cocone (f  i) g' X) (universal-property-pushout l (f  i) g')
  pr1 (universal-property-pushout-top-extension-by-equivalences ie je) =
    cocone-comp-vertical' i g' j g f c coh
  pr2 (universal-property-pushout-top-extension-by-equivalences ie je) =
    universal-property-pushout-top-extended-by-equivalences ie je

Extending pushouts by equivalences of cocones

Given a commutative diagram where i, j and k are equivalences,

          g'
      S' ---> B'
     / \       \
 f' /   \ k     \ j
   /     v   g   v
  A'     S ----> B
    \    |       |
   i \   | f     |
      \  v     ⌜ v
       > A ----> X

the induced square is a pushout:

   S' ---> B'
   |       |
   |       |
   v     ⌜ v
   A' ---> X.

This combines both special cases of the pushout pasting lemmas for equivalences.

Notice that the triple (i,j,k) is really an equivalence of spans. Thus, this result can be phrased as: the pushout is invariant under equivalence of spans.

module _
  { l1 l2 l3 l4 l5 l6 l7 : Level}
  { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
  { S' : UU l5} {A' : UU l6} {B' : UU l7}
  ( f : S  A) (g : S  B) (f' : S'  A') (g' : S'  B')
  ( i : A'  A) (j : B'  B) (k : S'  S)
  ( c : cocone f g X)
  ( up-c : {l : Level}  universal-property-pushout l f g c)
  ( coh-l : coherence-square-maps k f' f i)
  ( coh-r : coherence-square-maps g' k j g)
  where

  universal-property-pushout-extension-by-equivalences :
    {l : Level}  is-equiv i  is-equiv j  is-equiv k 
    Σ (cocone f' g' X)  d  universal-property-pushout l f' g' d)
  universal-property-pushout-extension-by-equivalences ie je ke =
    universal-property-pushout-top-extension-by-equivalences
      ( f')
      ( g  k)
      ( id)
      ( j)
      ( g')
      ( cocone-comp-horizontal' f' k g f i c coh-l)
      ( universal-property-pushout-left-extended-by-equivalences f g k i
        ( f')
        ( c)
        ( up-c)
        ( coh-l)
        ( ke)
        ( ie))
      ( coh-r)
      ( is-equiv-id)
      ( je)

  universal-property-pushout-extended-by-equivalences :
    is-equiv i  is-equiv j  is-equiv k 
    {l : Level} 
    universal-property-pushout l
      ( f')
      ( g')
      ( comp-cocone-hom-span f g f' g' i j k c coh-l coh-r)
  universal-property-pushout-extended-by-equivalences ie je ke =
    pr2 (universal-property-pushout-extension-by-equivalences ie je ke)

In a commuting cube where the vertical maps are equivalences, the bottom square is a pushout if and only if the top square is a pushout

module _
  { l1 l2 l3 l4 l1' l2' l3' l4' : Level}
  { A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
  ( f : A  B) (g : A  C) (h : B  D) (k : C  D)
  { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'}
  ( f' : A'  B') (g' : A'  C') (h' : B'  D') (k' : C'  D')
  ( hA : A'  A) (hB : B'  B) (hC : C'  C) (hD : D'  D)
  ( top : coherence-square-maps g' f' k' h')
  ( back-left : coherence-square-maps f' hA hB f)
  ( back-right : coherence-square-maps g' hA hC g)
  ( front-left : coherence-square-maps h' hB hD h)
  ( front-right : coherence-square-maps k' hC hD k)
  ( bottom : coherence-square-maps g f k h)
  ( c :
    coherence-cube-maps f g h k f' g' h' k' hA hB hC hD
      ( top)
      ( back-left)
      ( back-right)
      ( front-left)
      ( front-right)
      ( bottom))
  ( is-equiv-hA : is-equiv hA) (is-equiv-hB : is-equiv hB)
  ( is-equiv-hC : is-equiv hC) (is-equiv-hD : is-equiv hD)
  where

  universal-property-pushout-top-universal-property-pushout-bottom-cube-is-equiv :
    ( {l : Level} 
      universal-property-pushout l f g (h , k , bottom)) 
    ( {l : Level} 
      universal-property-pushout l f' g' (h' , k' , top))
  universal-property-pushout-top-universal-property-pushout-bottom-cube-is-equiv
    ( up-bottom)
    { l = l} =
    universal-property-pushout-pullback-property-pushout l f' g'
      ( h' , k' , top)
      ( λ W 
        is-pullback-bottom-is-pullback-top-cube-is-equiv
          ( precomp h' W)
          ( precomp k' W)
          ( precomp f' W)
          ( precomp g' W)
          ( precomp h W)
          ( precomp k W)
          ( precomp f W)
          ( precomp g W)
          ( precomp hD W)
          ( precomp hB W)
          ( precomp hC W)
          ( precomp hA W)
          ( precomp-coherence-square-maps g f k h bottom W)
          ( precomp-coherence-square-maps hB h' h hD (inv-htpy front-left) W)
          ( precomp-coherence-square-maps hC k' k hD (inv-htpy front-right) W)
          ( precomp-coherence-square-maps hA f' f hB (inv-htpy back-left) W)
          ( precomp-coherence-square-maps hA g' g hC (inv-htpy back-right) W)
          ( precomp-coherence-square-maps g' f' k' h' top W)
          ( precomp-coherence-cube-maps f g h k f' g' h' k' hA hB hC hD
            ( top)
            ( back-left)
            ( back-right)
            ( front-left)
            ( front-right)
            ( bottom)
            ( c)
            ( W))
          ( is-equiv-precomp-is-equiv hD is-equiv-hD W)
          ( is-equiv-precomp-is-equiv hB is-equiv-hB W)
          ( is-equiv-precomp-is-equiv hC is-equiv-hC W)
          ( is-equiv-precomp-is-equiv hA is-equiv-hA W)
          ( pullback-property-pushout-universal-property-pushout f g
            ( h , k , bottom)
            ( up-bottom)
            ( W)))

  universal-property-pushout-bottom-universal-property-pushout-top-cube-is-equiv :
    ( {l : Level} 
      universal-property-pushout l f' g' (h' , k' , top)) 
    ( {l : Level} 
      universal-property-pushout l f g (h , k , bottom))
  universal-property-pushout-bottom-universal-property-pushout-top-cube-is-equiv
    ( up-top)
    { l = l} =
    universal-property-pushout-pullback-property-pushout l f g
      ( h , k , bottom)
      ( λ W 
        is-pullback-top-is-pullback-bottom-cube-is-equiv
          ( precomp h' W)
          ( precomp k' W)
          ( precomp f' W)
          ( precomp g' W)
          ( precomp h W)
          ( precomp k W)
          ( precomp f W)
          ( precomp g W)
          ( precomp hD W)
          ( precomp hB W)
          ( precomp hC W)
          ( precomp hA W)
          ( precomp-coherence-square-maps g f k h bottom W)
          ( precomp-coherence-square-maps hB h' h hD (inv-htpy front-left) W)
          ( precomp-coherence-square-maps hC k' k hD (inv-htpy front-right) W)
          ( precomp-coherence-square-maps hA f' f hB (inv-htpy back-left) W)
          ( precomp-coherence-square-maps hA g' g hC (inv-htpy back-right) W)
          ( precomp-coherence-square-maps g' f' k' h' top W)
          ( precomp-coherence-cube-maps f g h k f' g' h' k' hA hB hC hD
            ( top)
            ( back-left)
            ( back-right)
            ( front-left)
            ( front-right)
            ( bottom)
            ( c)
            ( W))
          ( is-equiv-precomp-is-equiv hD is-equiv-hD W)
          ( is-equiv-precomp-is-equiv hB is-equiv-hB W)
          ( is-equiv-precomp-is-equiv hC is-equiv-hC W)
          ( is-equiv-precomp-is-equiv hA is-equiv-hA W)
          ( pullback-property-pushout-universal-property-pushout f' g'
            ( h' , k' , top)
            ( up-top)
            ( W)))

Recent changes