ε-δ limits of maps between metric spaces
Content created by Louis Wasserman.
Created on 2026-01-10.
Last modified on 2026-01-10.
module metric-spaces.epsilon-delta-limits-of-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.axiom-of-countable-choice open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import metric-spaces.limits-of-maps-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces
Idea
The
ε-δ definition of a limit¶
states that the limit of f x as x approaches x₀ is a y such that for any
ε : ℚ⁺, there exists a δ : ℚ⁺
such that if x and x₀ are in a δ-neighborhood of each other, f x and y
are in an ε-neighborhood of each other.
This contrasts to the definition of a
limit of a map in a metric
space, where there must exist a modulus map μ : ℚ⁺ → ℚ⁺ assigning an
appropriate δ for each possible value of ε. A limit is an ε-δ limit, but the
converse requires the
axiom of countable choice.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) (x : type-Metric-Space X) (y : type-Metric-Space Y) where is-ε-δ-limit-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-ε-δ-limit-prop-map-Metric-Space = Π-Prop ( ℚ⁺) ( λ ε → ∃ ( ℚ⁺) ( λ δ → Π-Prop ( type-Metric-Space X) ( λ x' → neighborhood-prop-Metric-Space X δ x x' ⇒ neighborhood-prop-Metric-Space Y ε y (f x')))) is-ε-δ-limit-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-ε-δ-limit-map-Metric-Space = type-Prop is-ε-δ-limit-prop-map-Metric-Space
Properties
Limits are ε-δ limits
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) (x : type-Metric-Space X) (y : type-Metric-Space Y) where abstract is-ε-δ-limit-is-limit-map-Metric-Space : is-point-limit-map-Metric-Space X Y f x y → is-ε-δ-limit-map-Metric-Space X Y f x y is-ε-δ-limit-is-limit-map-Metric-Space H ε = map-trunc-Prop (λ (μ , is-mod-μ) → (μ ε , is-mod-μ ε)) H
Assuming countable choice, ε-δ limits are limits
module _ {l1 l2 l3 l4 : Level} (acω : ACω) (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) (x : type-Metric-Space X) (y : type-Metric-Space Y) where abstract is-limit-is-ε-δ-limit-map-ACω-Metric-Space : is-ε-δ-limit-map-Metric-Space X Y f x y → is-point-limit-map-Metric-Space X Y f x y is-limit-is-ε-δ-limit-map-ACω-Metric-Space H = let open do-syntax-trunc-Prop ( is-point-limit-prop-map-Metric-Space X Y f x y) in do μ ← choice-countable-discrete-set-ACω ( set-ℚ⁺) ( is-countable-set-ℚ⁺) ( has-decidable-equality-ℚ⁺) ( acω) ( λ ε → Σ-Set ( set-ℚ⁺) ( λ δ → set-Prop ( Π-Prop ( type-Metric-Space X) ( λ x' → neighborhood-prop-Metric-Space X δ x x' ⇒ neighborhood-prop-Metric-Space Y ε y (f x'))))) ( H) intro-exists (pr1 ∘ μ) (pr2 ∘ μ)
See also
External links
- (ε, δ)-definition of limit at Wikidata
Recent changes
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).