ε-δ limits of maps between metric spaces

Content created by Louis Wasserman.

Created on 2026-01-10.
Last modified on 2026-01-10.

module metric-spaces.epsilon-delta-limits-of-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.axiom-of-countable-choice
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import metric-spaces.limits-of-maps-metric-spaces
open import metric-spaces.maps-metric-spaces
open import metric-spaces.metric-spaces

Idea

The ε-δ definition of a limit states that the limit of f x as x approaches x₀ is a y such that for any ε : ℚ⁺, there exists a δ : ℚ⁺ such that if x and x₀ are in a δ-neighborhood of each other, f x and y are in an ε-neighborhood of each other.

This contrasts to the definition of a limit of a map in a metric space, where there must exist a modulus map μ : ℚ⁺ → ℚ⁺ assigning an appropriate δ for each possible value of ε. A limit is an ε-δ limit, but the converse requires the axiom of countable choice.

Definition

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : map-Metric-Space X Y)
  (x : type-Metric-Space X)
  (y : type-Metric-Space Y)
  where

  is-ε-δ-limit-prop-map-Metric-Space : Prop (l1  l2  l4)
  is-ε-δ-limit-prop-map-Metric-Space =
    Π-Prop
      ( ℚ⁺)
      ( λ ε 
         ( ℚ⁺)
          ( λ δ 
            Π-Prop
              ( type-Metric-Space X)
              ( λ x' 
                neighborhood-prop-Metric-Space X δ x x' 
                neighborhood-prop-Metric-Space Y ε y (f x'))))

  is-ε-δ-limit-map-Metric-Space : UU (l1  l2  l4)
  is-ε-δ-limit-map-Metric-Space =
    type-Prop is-ε-δ-limit-prop-map-Metric-Space

Properties

Limits are ε-δ limits

module _
  {l1 l2 l3 l4 : Level}
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : map-Metric-Space X Y)
  (x : type-Metric-Space X)
  (y : type-Metric-Space Y)
  where

  abstract
    is-ε-δ-limit-is-limit-map-Metric-Space :
      is-point-limit-map-Metric-Space X Y f x y 
      is-ε-δ-limit-map-Metric-Space X Y f x y
    is-ε-δ-limit-is-limit-map-Metric-Space H ε =
      map-trunc-Prop  (μ , is-mod-μ)  (μ ε , is-mod-μ ε)) H

Assuming countable choice, ε-δ limits are limits

module _
  {l1 l2 l3 l4 : Level}
  (acω : ACω)
  (X : Metric-Space l1 l2)
  (Y : Metric-Space l3 l4)
  (f : map-Metric-Space X Y)
  (x : type-Metric-Space X)
  (y : type-Metric-Space Y)
  where

  abstract
    is-limit-is-ε-δ-limit-map-ACω-Metric-Space :
      is-ε-δ-limit-map-Metric-Space X Y f x y 
      is-point-limit-map-Metric-Space X Y f x y
    is-limit-is-ε-δ-limit-map-ACω-Metric-Space H =
      let
        open
          do-syntax-trunc-Prop
            ( is-point-limit-prop-map-Metric-Space X Y f x y)
      in do
        μ 
          choice-countable-discrete-set-ACω
            ( set-ℚ⁺)
            ( is-countable-set-ℚ⁺)
            ( has-decidable-equality-ℚ⁺)
            ( acω)
            ( λ ε 
              Σ-Set
                ( set-ℚ⁺)
                ( λ δ 
                  set-Prop
                    ( Π-Prop
                      ( type-Metric-Space X)
                      ( λ x' 
                        neighborhood-prop-Metric-Space X δ x x' 
                        neighborhood-prop-Metric-Space Y ε y (f x')))))
            ( H)
        intro-exists (pr1  μ) (pr2  μ)

See also

Recent changes