Geometric sequences of rational numbers
Content created by Louis Wasserman.
Created on 2025-11-07.
Last modified on 2025-11-07.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.geometric-sequences-rational-numbers where
Imports
open import commutative-algebra.geometric-sequences-commutative-rings open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.powers-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-rational-numbers open import foundation.identity-types open import foundation.negated-equality open import foundation.universe-levels open import group-theory.groups open import lists.sequences open import order-theory.strictly-increasing-sequences-strictly-preordered-sets
Idea
A geometric sequence¶ of rational numbers is a geometric sequence in the commutative ring of rational numbers.
Definitions
geometric-sequence-ℚ : UU lzero geometric-sequence-ℚ = geometric-sequence-Commutative-Ring commutative-ring-ℚ seq-geometric-sequence-ℚ : geometric-sequence-ℚ → sequence ℚ seq-geometric-sequence-ℚ = seq-geometric-sequence-Commutative-Ring commutative-ring-ℚ standard-geometric-sequence-ℚ : ℚ → ℚ → geometric-sequence-ℚ standard-geometric-sequence-ℚ = standard-geometric-sequence-Commutative-Ring commutative-ring-ℚ seq-standard-geometric-sequence-ℚ : ℚ → ℚ → sequence ℚ seq-standard-geometric-sequence-ℚ = seq-standard-geometric-sequence-Commutative-Ring commutative-ring-ℚ
Properties
The nth term of a geometric sequence with initial term a and common ratio r is a * rⁿ
module _ (a r : ℚ) where compute-standard-geometric-sequence-ℚ : (n : ℕ) → seq-standard-geometric-sequence-ℚ a r n = a *ℚ power-ℚ n r compute-standard-geometric-sequence-ℚ n = inv ( htpy-mul-pow-standard-geometric-sequence-Commutative-Ring ( commutative-ring-ℚ) ( a) ( r) ( n))
If r ≠ 1, the sum of the first n elements of the standard geometric sequence n ↦ arⁿ is a(1-rⁿ)/(1-r)
sum-standard-geometric-fin-sequence-ℚ : ℚ → ℚ → ℕ → ℚ sum-standard-geometric-fin-sequence-ℚ = sum-standard-geometric-fin-sequence-Commutative-Ring commutative-ring-ℚ module _ (a r : ℚ) (r≠1 : r ≠ one-ℚ) where abstract compute-sum-standard-geometric-fin-sequence-ℚ : (n : ℕ) → sum-standard-geometric-fin-sequence-ℚ a r n = ( a *ℚ ( (one-ℚ -ℚ power-ℚ n r) *ℚ rational-inv-ℚˣ (invertible-diff-neq-ℚ r one-ℚ r≠1))) compute-sum-standard-geometric-fin-sequence-ℚ 0 = inv ( equational-reasoning a *ℚ ((one-ℚ -ℚ one-ℚ) *ℚ _) = a *ℚ (zero-ℚ *ℚ _) by ap-mul-ℚ ( refl) ( ap-mul-ℚ (right-inverse-law-add-ℚ one-ℚ) refl) = a *ℚ zero-ℚ by ap-mul-ℚ refl (left-zero-law-mul-ℚ _) = zero-ℚ by right-zero-law-mul-ℚ a) compute-sum-standard-geometric-fin-sequence-ℚ (succ-ℕ n) = let 1/⟨1-r⟩ = rational-inv-ℚˣ (invertible-diff-neq-ℚ r one-ℚ r≠1) in equational-reasoning sum-standard-geometric-fin-sequence-ℚ a r (succ-ℕ n) = sum-standard-geometric-fin-sequence-ℚ a r n +ℚ seq-standard-geometric-sequence-ℚ a r n by cons-sum-fin-sequence-type-Commutative-Ring ( commutative-ring-ℚ) ( n) ( _) ( refl) = ( a *ℚ ( (one-ℚ -ℚ power-ℚ n r) *ℚ 1/⟨1-r⟩)) +ℚ ( a *ℚ power-ℚ n r) by ap-add-ℚ ( compute-sum-standard-geometric-fin-sequence-ℚ n) ( compute-standard-geometric-sequence-ℚ a r n) = a *ℚ (((one-ℚ -ℚ power-ℚ n r) *ℚ 1/⟨1-r⟩) +ℚ power-ℚ n r) by inv (left-distributive-mul-add-ℚ a _ _) = a *ℚ ( (((one-ℚ -ℚ power-ℚ n r) *ℚ 1/⟨1-r⟩) +ℚ (power-ℚ n r *ℚ (one-ℚ -ℚ r)) *ℚ 1/⟨1-r⟩)) by ap-mul-ℚ ( refl) ( ap-add-ℚ ( refl) ( inv ( cancel-right-mul-div-ℚˣ _ ( invertible-diff-neq-ℚ r one-ℚ r≠1)))) = a *ℚ ( ( (one-ℚ -ℚ power-ℚ n r) +ℚ (power-ℚ n r *ℚ (one-ℚ -ℚ r))) *ℚ 1/⟨1-r⟩) by ap-mul-ℚ ( refl) ( inv (right-distributive-mul-add-ℚ _ _ 1/⟨1-r⟩)) = a *ℚ ( ( one-ℚ -ℚ power-ℚ n r +ℚ ((power-ℚ n r *ℚ one-ℚ) -ℚ (power-ℚ n r *ℚ r))) *ℚ 1/⟨1-r⟩) by ap-mul-ℚ ( refl) ( ap-mul-ℚ ( ap-add-ℚ refl (left-distributive-mul-diff-ℚ _ _ _)) ( refl)) = a *ℚ ( ( one-ℚ -ℚ power-ℚ n r +ℚ ((power-ℚ n r -ℚ power-ℚ (succ-ℕ n) r))) *ℚ 1/⟨1-r⟩) by ap-mul-ℚ ( refl) ( ap-mul-ℚ ( ap-add-ℚ ( refl) ( ap-diff-ℚ ( right-unit-law-mul-ℚ _) ( inv (power-succ-ℚ n r)))) ( refl)) = a *ℚ ((one-ℚ -ℚ power-ℚ (succ-ℕ n) r) *ℚ 1/⟨1-r⟩) by ap-mul-ℚ ( refl) ( ap-mul-ℚ ( mul-right-div-Group group-add-ℚ _ _ _) ( refl))
External links
- Geometric progressions at Wikipedia
Recent changes
- 2025-11-07. Louis Wasserman. Formula for sums of finite geometric series in the rational numbers (#1610).