Increasing endomaps on the real numbers
Content created by Louis Wasserman.
Created on 2026-01-10.
Last modified on 2026-01-10.
module real-numbers.increasing-endomaps-real-numbers where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.double-negation open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import order-theory.large-posets open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.subposets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.dense-subsets-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.pointwise-continuous-endomaps-real-numbers open import real-numbers.pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.rational-approximates-of-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.subsets-real-numbers
Idea
A function f from the real numbers to
themselves is
increasing¶
if for all x ≤ y, f x ≤ f y; in other words, it is an
order-preserving endomap on the
poset of real numbers.
Several arguments on this page are due to Mark Saving in this Mathematics Stack Exchange answer: https://math.stackexchange.com/q/5107860.
Definition
is-increasing-prop-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → Prop (lsuc l1 ⊔ l2) is-increasing-prop-endomap-ℝ {l1} {l2} = preserves-order-prop-Poset (ℝ-Poset l1) (ℝ-Poset l2) is-increasing-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → UU (lsuc l1 ⊔ l2) is-increasing-endomap-ℝ f = type-Prop (is-increasing-prop-endomap-ℝ f) is-increasing-on-subset-endomap-ℝ : {l1 l2 l3 : Level} (f : ℝ l1 → ℝ l2) (S : subset-ℝ l3 l1) → UU (lsuc l1 ⊔ l2 ⊔ l3) is-increasing-on-subset-endomap-ℝ f S = preserves-order-Poset ( poset-Subposet (ℝ-Poset _) S) ( ℝ-Poset _) ( f ∘ inclusion-subset-ℝ S)
Properties
If x < y implies f x ≤ f y, then f is increasing
module _ {l1 l2 : Level} (f : ℝ l1 → ℝ l2) where abstract is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ : ((x y : ℝ l1) → le-ℝ x y → leq-ℝ (f x) (f y)) → is-increasing-endomap-ℝ f is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ H x y x≤y = double-negation-elim-leq-ℝ ( f x) ( f y) ( map-double-negation ( rec-coproduct ( λ x~y → leq-eq-ℝ (ap f (eq-sim-ℝ x~y))) ( H x y)) ( irrefutable-sim-or-le-leq-ℝ x y x≤y)) module _ {l1 l2 l3 : Level} (f : ℝ l1 → ℝ l2) (S : subset-ℝ l3 l1) where abstract is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ : ( ((x y : type-subset-ℝ S) → le-ℝ (pr1 x) (pr1 y) → leq-ℝ (f (pr1 x)) (f (pr1 y)))) → is-increasing-on-subset-endomap-ℝ f S is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ H (x , x∈S) (y , y∈S) x≤y = double-negation-elim-leq-ℝ ( f x) ( f y) ( map-double-negation ( rec-coproduct ( λ x~y → leq-eq-ℝ (ap f (eq-sim-ℝ x~y))) ( H (x , x∈S) (y , y∈S))) ( irrefutable-sim-or-le-leq-ℝ x y x≤y))
If a pointwise ε-δ continuous function f is increasing on a dense subset of ℝ, then it is increasing on ℝ
module _ {l1 l2 l3 : Level} (f : pointwise-ε-δ-continuous-endomap-ℝ l1 l2) (S : dense-subset-ℝ l3 l1) where abstract is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ : is-increasing-on-subset-endomap-ℝ ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( subset-dense-subset-ℝ S) → is-increasing-endomap-ℝ (map-pointwise-ε-δ-continuous-endomap-ℝ f) is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ H = let f' = map-pointwise-ε-δ-continuous-endomap-ℝ f open do-syntax-trunc-Prop empty-Prop open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( λ x y x<y → leq-not-le-ℝ ( f' y) ( f' x) ( λ f'y<f'x → do (ε , f'y+ε<f'x) ← exists-positive-rational-separation-le-ℝ f'y<f'x let (εx , εy , εx+εy=ε) = split-ℚ⁺ ε (δx , Hδx) ← is-pointwise-ε-δ-continuous-map-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( x) ( εx) (δy , Hδy) ← is-pointwise-ε-δ-continuous-map-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( y) ( εy) ( ( (x' , x'∈S) , (y' , y'∈S)) , x'<y' , Nxx' , Nyy') ← exist-close-le-elements-dense-subset-ℝ S δx δy x<y not-leq-le-ℝ _ _ ( f'y+ε<f'x) ( chain-of-inequalities f' x ≤ f' x' +ℝ real-ℚ⁺ εx by left-leq-real-bound-neighborhood-ℝ ( εx) ( f' x) ( f' x') ( Hδx x' Nxx') ≤ f' y' +ℝ real-ℚ⁺ εx by preserves-leq-right-add-ℝ ( real-ℚ⁺ εx) ( f' x') ( f' y') ( H (x' , x'∈S) (y' , y'∈S) (leq-le-ℝ x'<y')) ≤ (f' y +ℝ real-ℚ⁺ εy) +ℝ real-ℚ⁺ εx by preserves-leq-right-add-ℝ ( real-ℚ⁺ εx) ( f' y') ( f' y +ℝ real-ℚ⁺ εy) ( right-leq-real-bound-neighborhood-ℝ ( εy) ( f' y) ( f' y') ( Hδy y' Nyy')) ≤ f' y +ℝ real-ℚ⁺ ε by leq-eq-ℝ ( equational-reasoning f' y +ℝ real-ℚ⁺ εy +ℝ real-ℚ⁺ εx = f' y +ℝ (real-ℚ⁺ εy +ℝ real-ℚ⁺ εx) by associative-add-ℝ _ _ _ = f' y +ℝ real-ℚ⁺ (εy +ℚ⁺ εx) by ap-add-ℝ refl (add-real-ℚ _ _) = f' y +ℝ real-ℚ⁺ ε by ap-add-ℝ ( refl) ( ap ( real-ℚ⁺) ( commutative-add-ℚ⁺ εy εx ∙ εx+εy=ε))))))
If f is pointwise continuous and increasing on the rational real numbers, it is increasing on the real numbers
module _ {l1 l2 : Level} (f : pointwise-ε-δ-continuous-endomap-ℝ l1 l2) where abstract is-increasing-is-increasing-rational-pointwise-ε-δ-continuous-endomap-ℝ : preserves-order-Poset ( ℚ-Poset) ( ℝ-Poset l2) ( map-pointwise-ε-δ-continuous-endomap-ℝ f ∘ raise-real-ℚ l1) → is-increasing-endomap-ℝ (map-pointwise-ε-δ-continuous-endomap-ℝ f) is-increasing-is-increasing-rational-pointwise-ε-δ-continuous-endomap-ℝ H = is-increasing-is-increasing-dense-subset-pointwise-ε-δ-continuous-endomap-ℝ ( f) ( dense-subset-rational-ℝ l1) ( λ (x , p , x~p) (y , q , y~q) x≤y → binary-tr ( leq-ℝ) ( ap ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( inv (eq-raise-real-rational-is-rational-ℝ x~p))) ( ap ( map-pointwise-ε-δ-continuous-endomap-ℝ f) ( inv (eq-raise-real-rational-is-rational-ℝ y~q))) ( H ( p) ( q) ( reflects-leq-real-ℚ ( leq-leq-raise-ℝ l1 ( binary-tr ( leq-ℝ) ( eq-raise-real-rational-is-rational-ℝ x~p) ( eq-raise-real-rational-is-rational-ℝ y~q) ( x≤y))))))
Recent changes
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).