Increasing endomaps on the real numbers

Content created by Louis Wasserman.

Created on 2026-01-10.
Last modified on 2026-01-13.

module real-numbers.increasing-endomaps-real-numbers where
Imports
open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.double-negation
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import order-theory.large-posets
open import order-theory.order-preserving-maps-posets
open import order-theory.subposets

open import real-numbers.addition-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.dense-subsets-real-numbers
open import real-numbers.difference-real-numbers
open import real-numbers.inequalities-addition-and-subtraction-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.metric-space-of-real-numbers
open import real-numbers.pointwise-continuous-endomaps-real-numbers
open import real-numbers.pointwise-epsilon-delta-continuous-endomaps-real-numbers
open import real-numbers.rational-approximates-of-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.similarity-real-numbers
open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers
open import real-numbers.strict-inequality-real-numbers
open import real-numbers.subsets-real-numbers

Idea

A function f from the real numbers to themselves is increasing if for all x ≤ y, f x ≤ f y; in other words, it is an order-preserving endomap on the poset of real numbers.

Several arguments on this page are due to Mark Saving in this Mathematics Stack Exchange answer: https://math.stackexchange.com/q/5107860.

Definition

is-increasing-prop-endomap-ℝ :
  {l1 l2 : Level}  ( l1   l2)  Prop (lsuc l1  l2)
is-increasing-prop-endomap-ℝ {l1} {l2} =
  preserves-order-prop-Poset (ℝ-Poset l1) (ℝ-Poset l2)

is-increasing-endomap-ℝ :
  {l1 l2 : Level}  ( l1   l2)  UU (lsuc l1  l2)
is-increasing-endomap-ℝ f = type-Prop (is-increasing-prop-endomap-ℝ f)

is-increasing-on-subset-endomap-ℝ :
  {l1 l2 l3 : Level} (f :  l1   l2) (S : subset-ℝ l3 l1) 
  UU (lsuc l1  l2  l3)
is-increasing-on-subset-endomap-ℝ f S =
  preserves-order-Poset
    ( poset-Subposet (ℝ-Poset _) S)
    ( ℝ-Poset _)
    ( f  inclusion-subset-ℝ S)

Properties

If x < y implies f x ≤ f y, then f is increasing

module _
  {l1 l2 : Level}
  (f :  l1   l2)
  where

  abstract
    is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ :
      ((x y :  l1)  le-ℝ x y  leq-ℝ (f x) (f y)) 
      is-increasing-endomap-ℝ f
    is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ H x y x≤y =
      double-negation-elim-leq-ℝ
        ( f x)
        ( f y)
        ( map-double-negation
          ( rec-coproduct
            ( λ x~y  leq-eq-ℝ (ap f (eq-sim-ℝ x~y)))
            ( H x y))
          ( irrefutable-sim-or-le-leq-ℝ x y x≤y))

module _
  {l1 l2 l3 : Level}
  (f :  l1   l2)
  (S : subset-ℝ l3 l1)
  where

  abstract
    is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ :
      ( ((x y : type-subset-ℝ S) 
        le-ℝ (pr1 x) (pr1 y)  leq-ℝ (f (pr1 x)) (f (pr1 y)))) 
      is-increasing-on-subset-endomap-ℝ f S
    is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ
      H (x , x∈S) (y , y∈S) x≤y =
      double-negation-elim-leq-ℝ
        ( f x)
        ( f y)
        ( map-double-negation
          ( rec-coproduct
            ( λ x~y  leq-eq-ℝ (ap f (eq-sim-ℝ x~y)))
            ( H (x , x∈S) (y , y∈S)))
          ( irrefutable-sim-or-le-leq-ℝ x y x≤y))

Recent changes