Increasing endomaps on the real numbers
Content created by Louis Wasserman.
Created on 2026-01-10.
Last modified on 2026-01-13.
module real-numbers.increasing-endomaps-real-numbers where
Imports
open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.double-negation open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import order-theory.large-posets open import order-theory.order-preserving-maps-posets open import order-theory.subposets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.dense-subsets-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.pointwise-continuous-endomaps-real-numbers open import real-numbers.pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.rational-approximates-of-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.subsets-real-numbers
Idea
A function f from the real numbers to
themselves is
increasing¶
if for all x ≤ y, f x ≤ f y; in other words, it is an
order-preserving endomap on the
poset of real numbers.
Several arguments on this page are due to Mark Saving in this Mathematics Stack Exchange answer: https://math.stackexchange.com/q/5107860.
Definition
is-increasing-prop-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → Prop (lsuc l1 ⊔ l2) is-increasing-prop-endomap-ℝ {l1} {l2} = preserves-order-prop-Poset (ℝ-Poset l1) (ℝ-Poset l2) is-increasing-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → UU (lsuc l1 ⊔ l2) is-increasing-endomap-ℝ f = type-Prop (is-increasing-prop-endomap-ℝ f) is-increasing-on-subset-endomap-ℝ : {l1 l2 l3 : Level} (f : ℝ l1 → ℝ l2) (S : subset-ℝ l3 l1) → UU (lsuc l1 ⊔ l2 ⊔ l3) is-increasing-on-subset-endomap-ℝ f S = preserves-order-Poset ( poset-Subposet (ℝ-Poset _) S) ( ℝ-Poset _) ( f ∘ inclusion-subset-ℝ S)
Properties
If x < y implies f x ≤ f y, then f is increasing
module _ {l1 l2 : Level} (f : ℝ l1 → ℝ l2) where abstract is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ : ((x y : ℝ l1) → le-ℝ x y → leq-ℝ (f x) (f y)) → is-increasing-endomap-ℝ f is-increasing-is-increasing-on-strict-inequalities-endomap-ℝ H x y x≤y = double-negation-elim-leq-ℝ ( f x) ( f y) ( map-double-negation ( rec-coproduct ( λ x~y → leq-eq-ℝ (ap f (eq-sim-ℝ x~y))) ( H x y)) ( irrefutable-sim-or-le-leq-ℝ x y x≤y)) module _ {l1 l2 l3 : Level} (f : ℝ l1 → ℝ l2) (S : subset-ℝ l3 l1) where abstract is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ : ( ((x y : type-subset-ℝ S) → le-ℝ (pr1 x) (pr1 y) → leq-ℝ (f (pr1 x)) (f (pr1 y)))) → is-increasing-on-subset-endomap-ℝ f S is-increasing-is-increasing-on-strict-inequalities-on-subset-endomap-ℝ H (x , x∈S) (y , y∈S) x≤y = double-negation-elim-leq-ℝ ( f x) ( f y) ( map-double-negation ( rec-coproduct ( λ x~y → leq-eq-ℝ (ap f (eq-sim-ℝ x~y))) ( H (x , x∈S) (y , y∈S))) ( irrefutable-sim-or-le-leq-ℝ x y x≤y))
Recent changes
- 2026-01-13. Louis Wasserman. Unbounded above and below, strictly increasing, pointwise epsilon-delta continuous endomaps on the real numbers are automorphisms (#1794).
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).