Linear endomaps on left modules of rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.linear-endomaps-left-modules-rings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.iterating-functions open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import ring-theory.rings
Idea
A
linear endomap¶
of a left module M over a
ring is a
linear map from M to
itself.
Definition
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where is-linear-endo-prop-left-module-Ring : (type-left-module-Ring R M → type-left-module-Ring R M) → Prop (l1 ⊔ l2) is-linear-endo-prop-left-module-Ring = is-linear-map-prop-left-module-Ring R M M is-linear-endo-left-module-Ring : (type-left-module-Ring R M → type-left-module-Ring R M) → UU (l1 ⊔ l2) is-linear-endo-left-module-Ring = is-linear-map-left-module-Ring R M M linear-endo-left-module-Ring : UU (l1 ⊔ l2) linear-endo-left-module-Ring = linear-map-left-module-Ring R M M module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (f : linear-endo-left-module-Ring R M) where map-linear-endo-left-module-Ring : type-left-module-Ring R M → type-left-module-Ring R M map-linear-endo-left-module-Ring = pr1 f is-linear-map-linear-endo-left-module-Ring : is-linear-endo-left-module-Ring R M ( map-linear-endo-left-module-Ring) is-linear-map-linear-endo-left-module-Ring = pr2 f
Properties
A linear endomap maps zero to zero
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (f : linear-endo-left-module-Ring R M) where abstract is-zero-map-zero-linear-endo-left-module-Ring : is-zero-left-module-Ring R M ( map-linear-endo-left-module-Ring R M f ( zero-left-module-Ring R M)) is-zero-map-zero-linear-endo-left-module-Ring = is-zero-map-zero-linear-map-left-module-Ring R M M f
A linear endomap maps -x to the negation of the map of x
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (f : linear-endo-left-module-Ring R M) where abstract map-neg-linear-endo-left-module-Ring : (x : type-left-module-Ring R M) → map-linear-endo-left-module-Ring R M f ( neg-left-module-Ring R M x) = neg-left-module-Ring R M (map-linear-endo-left-module-Ring R M f x) map-neg-linear-endo-left-module-Ring = map-neg-linear-map-left-module-Ring R M M f
The identity map is a linear endomap
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) where is-linear-map-id-left-module-Ring : is-linear-map-left-module-Ring R M M id is-linear-map-id-left-module-Ring = (λ _ _ → refl) , (λ _ _ → refl) id-linear-endo-left-module-Ring : linear-endo-left-module-Ring R M id-linear-endo-left-module-Ring = (id , is-linear-map-id-left-module-Ring)
Composition of linear endomaps
module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (g : type-left-module-Ring R M → type-left-module-Ring R M) (f : type-left-module-Ring R M → type-left-module-Ring R M) where abstract is-linear-endo-comp-left-module-Ring : is-linear-endo-left-module-Ring R M g → is-linear-endo-left-module-Ring R M f → is-linear-endo-left-module-Ring R M (g ∘ f) is-linear-endo-comp-left-module-Ring = is-linear-map-comp-left-module-Ring R M M M g f module _ {l1 l2 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (g : linear-endo-left-module-Ring R M) (f : linear-endo-left-module-Ring R M) where comp-linear-endo-left-module-Ring : linear-endo-left-module-Ring R M comp-linear-endo-left-module-Ring = comp-linear-map-left-module-Ring R M M M g f
Iterating linear endomaps
module _ {l1 l2 : Level} (R : Ring l1) (V : left-module-Ring l2 R) where abstract is-linear-endo-iterate-map-linear-endo-left-module-Ring : (n : ℕ) (f : linear-endo-left-module-Ring R V) → is-linear-endo-left-module-Ring R V ( iterate n (map-linear-endo-left-module-Ring R V f)) is-linear-endo-iterate-map-linear-endo-left-module-Ring 0 _ = is-linear-map-id-left-module-Ring R V is-linear-endo-iterate-map-linear-endo-left-module-Ring (succ-ℕ n) f = is-linear-endo-comp-left-module-Ring ( R) ( V) ( map-linear-endo-left-module-Ring R V f) ( iterate n (map-linear-endo-left-module-Ring R V f)) ( is-linear-map-linear-endo-left-module-Ring R V f) ( is-linear-endo-iterate-map-linear-endo-left-module-Ring n f) iterate-linear-endo-left-module-Ring : ℕ → linear-endo-left-module-Ring R V → linear-endo-left-module-Ring R V iterate-linear-endo-left-module-Ring n f = ( iterate n (map-linear-endo-left-module-Ring R V f) , is-linear-endo-iterate-map-linear-endo-left-module-Ring n f)
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).