Structure
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Elisabeth Stenholm.
Created on 2022-02-16.
Last modified on 2024-01-12.
module foundation.structure where
Imports
open import foundation.dependent-pair-types open import foundation.univalence open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.identity-types open import foundation-core.transport-along-identifications
Idea
Given a type family P
on the universe, a P
-structured type consists of a
type A
equipped with an element of type P A
.
Definition
structure : {l1 l2 : Level} (P : UU l1 → UU l2) → UU (lsuc l1 ⊔ l2) structure {l1} P = Σ (UU l1) P fam-structure : {l1 l2 l3 : Level} (P : UU l1 → UU l2) (A : UU l3) → UU (lsuc l1 ⊔ l2 ⊔ l3) fam-structure P A = A → structure P structure-map : {l1 l2 l3 : Level} (P : UU (l1 ⊔ l2) → UU l3) {A : UU l1} {B : UU l2} (f : A → B) → UU (l2 ⊔ l3) structure-map P {A} {B} f = (b : B) → P (fiber f b) hom-structure : {l1 l2 l3 : Level} (P : UU (l1 ⊔ l2) → UU l3) → UU l1 → UU l2 → UU (l1 ⊔ l2 ⊔ l3) hom-structure P A B = Σ (A → B) (structure-map P)
Properties
Having structure is closed under equivalences
has-structure-equiv : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P X → P Y has-structure-equiv P e = tr P (eq-equiv e) has-structure-equiv' : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P Y → P X has-structure-equiv' P e = tr P (inv (eq-equiv e))
Recent changes
- 2024-01-12. Fredrik Bakke. Make type arguments implicit for
eq-equiv
(#998). - 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).