Equality of extensions of dependent maps
Created on 2025-11-12.
Last modified on 2025-11-12.
module orthogonal-factorization-systems.equality-extensions-dependent-maps where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.torsorial-type-families open import orthogonal-factorization-systems.extensions-dependent-maps
Idea
We characterize equality of extensions of dependent maps.
Definition
Homotopies of extensions of dependent maps
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B) {P : B → UU l3} (f : (x : A) → P (i x)) where coherence-htpy-extension-dependent-map : (e e' : extension-dependent-map i P f) → map-extension-dependent-map e ~ map-extension-dependent-map e' → UU (l1 ⊔ l3) coherence-htpy-extension-dependent-map e e' K = ( is-extension-map-extension-dependent-map e ∙h (K ·r i)) ~ ( is-extension-map-extension-dependent-map e') htpy-extension-dependent-map : (e e' : extension-dependent-map i P f) → UU (l1 ⊔ l2 ⊔ l3) htpy-extension-dependent-map e e' = Σ ( map-extension-dependent-map e ~ map-extension-dependent-map e') ( coherence-htpy-extension-dependent-map e e') refl-htpy-extension-dependent-map : (e : extension-dependent-map i P f) → htpy-extension-dependent-map e e pr1 (refl-htpy-extension-dependent-map e) = refl-htpy pr2 (refl-htpy-extension-dependent-map e) = right-unit-htpy
Homotopies of extensions with homotopies going the other way
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B) {P : B → UU l3} (f : (x : A) → P (i x)) where coherence-htpy-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → map-extension-dependent-map' e ~ map-extension-dependent-map' e' → UU (l1 ⊔ l3) coherence-htpy-extension-dependent-map' e e' K = ( is-extension-map-extension-dependent-map' e) ~ ( K ·r i ∙h is-extension-map-extension-dependent-map' e') htpy-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → UU (l1 ⊔ l2 ⊔ l3) htpy-extension-dependent-map' e e' = Σ ( map-extension-dependent-map' e ~ map-extension-dependent-map' e') ( coherence-htpy-extension-dependent-map' e e') refl-htpy-extension-dependent-map' : (e : extension-dependent-map' i P f) → htpy-extension-dependent-map' e e pr1 (refl-htpy-extension-dependent-map' e) = refl-htpy pr2 (refl-htpy-extension-dependent-map' e) = refl-htpy
Properties
Homotopies characterize equality
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B) {P : B → UU l3} (f : (x : A) → P (i x)) where htpy-eq-extension-dependent-map : (e e' : extension-dependent-map i P f) → e = e' → htpy-extension-dependent-map i f e e' htpy-eq-extension-dependent-map e .e refl = refl-htpy-extension-dependent-map i f e abstract is-torsorial-htpy-extension-dependent-map : (e : extension-dependent-map i P f) → is-torsorial (htpy-extension-dependent-map i f e) is-torsorial-htpy-extension-dependent-map e = is-torsorial-Eq-structure ( is-torsorial-htpy (map-extension-dependent-map e)) ( map-extension-dependent-map e , refl-htpy) ( is-torsorial-htpy ( is-extension-map-extension-dependent-map e ∙h refl-htpy)) abstract is-equiv-htpy-eq-extension-dependent-map : (e e' : extension-dependent-map i P f) → is-equiv (htpy-eq-extension-dependent-map e e') is-equiv-htpy-eq-extension-dependent-map e = fundamental-theorem-id ( is-torsorial-htpy-extension-dependent-map e) ( htpy-eq-extension-dependent-map e) extensionality-extension-dependent-map : (e e' : extension-dependent-map i P f) → (e = e') ≃ htpy-extension-dependent-map i f e e' pr1 (extensionality-extension-dependent-map e e') = htpy-eq-extension-dependent-map e e' pr2 (extensionality-extension-dependent-map e e') = is-equiv-htpy-eq-extension-dependent-map e e' eq-htpy-extension-dependent-map : (e e' : extension-dependent-map i P f) → htpy-extension-dependent-map i f e e' → e = e' eq-htpy-extension-dependent-map e e' = map-inv-equiv (extensionality-extension-dependent-map e e')
Characterizing equality of extensions of dependent maps with homotopies going the other way
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B) {P : B → UU l3} (f : (x : A) → P (i x)) where htpy-eq-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → e = e' → htpy-extension-dependent-map' i f e e' htpy-eq-extension-dependent-map' e .e refl = refl-htpy-extension-dependent-map' i f e abstract is-torsorial-htpy-extension-dependent-map' : (e : extension-dependent-map' i P f) → is-torsorial (htpy-extension-dependent-map' i f e) is-torsorial-htpy-extension-dependent-map' e = is-torsorial-Eq-structure ( is-torsorial-htpy (map-extension-dependent-map' e)) ( map-extension-dependent-map' e , refl-htpy) ( is-torsorial-htpy ( is-extension-map-extension-dependent-map' e)) abstract is-equiv-htpy-eq-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → is-equiv (htpy-eq-extension-dependent-map' e e') is-equiv-htpy-eq-extension-dependent-map' e = fundamental-theorem-id ( is-torsorial-htpy-extension-dependent-map' e) ( htpy-eq-extension-dependent-map' e) extensionality-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → (e = e') ≃ (htpy-extension-dependent-map' i f e e') pr1 (extensionality-extension-dependent-map' e e') = htpy-eq-extension-dependent-map' e e' pr2 (extensionality-extension-dependent-map' e e') = is-equiv-htpy-eq-extension-dependent-map' e e' eq-htpy-extension-dependent-map' : (e e' : extension-dependent-map' i P f) → htpy-extension-dependent-map' i f e e' → e = e' eq-htpy-extension-dependent-map' e e' = map-inv-equiv (extensionality-extension-dependent-map' e e')
Recent changes
- 2025-11-12. Fredrik Bakke. chore: Rename
extensiontoextension-mapandlifttolift-map(#1706).