Commuting squares of order preserving maps of large posets
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2024-04-25.
module order-theory.commuting-squares-of-order-preserving-maps-large-posets where
Imports
open import foundation.universe-levels open import foundation-core.commuting-squares-of-maps open import order-theory.large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.similarity-of-order-preserving-maps-large-posets
Idea
A square
i
P -----> U
| |
f | | g
∨ ∨
Q -----> V
j
of order preserving maps
between large posets is said to commute if
for each x : type-Large-Poset P l
the elements
j (f x) : type-Large-Poset V (γj (γf l))
g (i x) : type-Large-Poset V (γg (γi l))
are similar. In other
words, we say that the square above commutes if the composites j ∘ f
and
g ∘ i
are
similar.
Definitions
module _ {αP αQ αU αV γi γf γg γj : Level → Level} {βP βQ βU βV : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (U : Large-Poset αU βU) (V : Large-Poset αV βV) (i : hom-Large-Poset γi P U) (f : hom-Large-Poset γf P Q) (g : hom-Large-Poset γg U V) (j : hom-Large-Poset γj Q V) where coherence-square-hom-Large-Poset : UUω coherence-square-hom-Large-Poset = sim-hom-Large-Poset P V ( comp-hom-Large-Poset P Q V j f) ( comp-hom-Large-Poset P U V g i)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-24. Egbert Rijke. Abelianization (#877).