Descent for surjective maps
Content created by Fredrik Bakke.
Created on 2026-02-02.
Last modified on 2026-02-02.
module foundation.descent-surjective-maps where
Imports
open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-fibers-of-maps open import foundation.logical-equivalences open import foundation.surjective-maps open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.pullbacks
Idea
The descent property¶ of surjective maps asserts that in a commuting diagram of the form
p q
A ----->> B ------> C
| ⌟ | |
f| g| |h
∨ ∨ ∨
X ----->> Y ------> Z,
i j
where the maps i and p are surjective and the left hand square is a
pullback, then the right square is a pullback if
and only if the outer rectangle is a pullback.
This descent property appears as Theorem 2.3 in [CR21].
Theorem
In the formalization we do not presuppose that p is surjective, as this
follows by base change stability of surjections.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} where descent-is-surjective : (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (vertical-map-cone j h c) A) → is-surjective i → is-pullback i (vertical-map-cone j h c) d → is-pullback (j ∘ i) h (pasting-horizontal-cone i j h c d) → is-pullback j h c descent-is-surjective i j h c d is-surjective-i is-pb-d is-pb-rectangle = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone j h c ( map-inv-is-equiv-precomp-Π-Prop-is-surjective ( is-surjective-i) ( λ y → is-equiv-Prop (map-fiber-vertical-map-cone j h c y)) ( λ x → is-equiv-right-map-triangle ( map-fiber-vertical-map-cone (j ∘ i) h ( pasting-horizontal-cone i j h c d) ( x)) ( map-fiber-vertical-map-cone j h c (i x)) ( map-fiber-vertical-map-cone i (vertical-map-cone j h c) d x) ( preserves-pasting-horizontal-map-fiber-vertical-map-cone i j h c d x) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback ( j ∘ i) ( h) ( pasting-horizontal-cone i j h c d) ( is-pb-rectangle) ( x)) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback i ( vertical-map-cone j h c) ( d) ( is-pb-d) ( x)))) descent-surjection : (i : X ↠ Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone (map-surjection i) (vertical-map-cone j h c) A) → is-pullback (map-surjection i) (vertical-map-cone j h c) d → is-pullback ( j ∘ map-surjection i) ( h) ( pasting-horizontal-cone (map-surjection i) j h c d) → is-pullback j h c descent-surjection (i , I) j h c d = descent-is-surjective i j h c d I iff-descent-is-surjective : (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (vertical-map-cone j h c) A) → is-surjective i → is-pullback i (vertical-map-cone j h c) d → is-pullback (j ∘ i) h (pasting-horizontal-cone i j h c d) ↔ is-pullback j h c iff-descent-is-surjective i j h c d is-surjective-i is-pb-d = ( descent-is-surjective i j h c d is-surjective-i is-pb-d , ( λ C → is-pullback-rectangle-is-pullback-left-square i j h c d C is-pb-d)) iff-descent-surjection : (i : X ↠ Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone (map-surjection i) (vertical-map-cone j h c) A) → is-pullback (map-surjection i) (vertical-map-cone j h c) d → is-pullback ( j ∘ map-surjection i) ( h) ( pasting-horizontal-cone (map-surjection i) j h c d) ↔ is-pullback j h c iff-descent-surjection (i , I) j h c d = iff-descent-is-surjective i j h c d I
References
- [CR21]
- Felix Cherubini and Egbert Rijke. Modal descent. Mathematical Structures in Computer Science, 31(4):363–391, 04 2021. arXiv:2003.09713, doi:10.1017/S0960129520000201.
Table of descent properties
| Concept | File |
|---|---|
| Descent for coproduct types | foundation.descent-coproduct-types |
| Descent for dependent pair types | foundation.descent-dependent-pair-types |
| Descent for empty types | foundation.descent-empty-types |
| Descent for equivalences | foundation.descent-equivalences |
| Descent for pushouts | synthetic-homotopy-theory.descent-pushouts |
| Descent for sequential colimits | synthetic-homotopy-theory.descent-sequential-colimits |
| Descent for surjective maps | foundation.descent-surjective-maps |
| Descent for the circle | synthetic-homotopy-theory.descent-circle |
Recent changes
- 2026-02-02. Fredrik Bakke. Descent for surjective maps (#1732).