Directed families in posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module domain-theory.directed-families-posets where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.surjective-maps open import foundation.universal-quantification open import foundation.universe-levels open import order-theory.order-preserving-maps-posets open import order-theory.posets
Idea
A
directed family of elements¶
in a poset P
consists of an
inhabited type I
and a map x : I → P
such
that for any two elements i j : I
there
exists an element k : I
such that
both x i ≤ x k
and x j ≤ x k
hold.
Definitions
The predicate on a family of elements in a poset of being directed
is-directed-prop-family-Poset : {l1 l2 l3 : Level} (P : Poset l1 l2) (I : Inhabited-Type l3) (x : type-Inhabited-Type I → type-Poset P) → Prop (l2 ⊔ l3) is-directed-prop-family-Poset P I x = ∀' ( type-Inhabited-Type I) ( λ i → ∀' ( type-Inhabited-Type I) ( λ j → ∃ ( type-Inhabited-Type I) ( λ k → leq-prop-Poset P (x i) (x k) ∧ leq-prop-Poset P (x j) (x k)))) is-directed-family-Poset : {l1 l2 l3 : Level} (P : Poset l1 l2) (I : Inhabited-Type l3) (α : type-Inhabited-Type I → type-Poset P) → UU (l2 ⊔ l3) is-directed-family-Poset P I x = type-Prop (is-directed-prop-family-Poset P I x)
The type of directed families of elements in a poset
directed-family-Poset : {l1 l2 : Level} (l3 : Level) → Poset l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l3) directed-family-Poset l3 P = Σ ( Inhabited-Type l3) ( λ I → Σ ( type-Inhabited-Type I → type-Poset P) ( is-directed-family-Poset P I)) module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (x : directed-family-Poset l3 P) where inhabited-type-directed-family-Poset : Inhabited-Type l3 inhabited-type-directed-family-Poset = pr1 x type-directed-family-Poset : UU l3 type-directed-family-Poset = type-Inhabited-Type inhabited-type-directed-family-Poset is-inhabited-type-directed-family-Poset : is-inhabited type-directed-family-Poset is-inhabited-type-directed-family-Poset = is-inhabited-type-Inhabited-Type inhabited-type-directed-family-Poset family-directed-family-Poset : type-directed-family-Poset → type-Poset P family-directed-family-Poset = pr1 (pr2 x) is-directed-family-directed-family-Poset : is-directed-family-Poset P ( inhabited-type-directed-family-Poset) ( family-directed-family-Poset) is-directed-family-directed-family-Poset = pr2 (pr2 x)
The action of order preserving maps on directed families
module _ {l1 l2 l3 l4 l5 : Level} (P : Poset l1 l2) (Q : Poset l3 l4) (f : hom-Poset P Q) (x : directed-family-Poset l5 P) where type-directed-family-hom-Poset : UU l5 type-directed-family-hom-Poset = type-directed-family-Poset P x is-inhabited-type-directed-family-hom-Poset : is-inhabited type-directed-family-hom-Poset is-inhabited-type-directed-family-hom-Poset = is-inhabited-type-directed-family-Poset P x inhabited-type-directed-family-hom-Poset : Inhabited-Type l5 inhabited-type-directed-family-hom-Poset = type-directed-family-hom-Poset , is-inhabited-type-directed-family-hom-Poset family-directed-family-hom-Poset : type-directed-family-hom-Poset → type-Poset Q family-directed-family-hom-Poset = map-hom-Poset P Q f ∘ family-directed-family-Poset P x abstract is-directed-family-directed-family-hom-Poset : is-directed-family-Poset Q inhabited-type-directed-family-hom-Poset family-directed-family-hom-Poset is-directed-family-directed-family-hom-Poset u v = elim-exists ( exists-structure-Prop type-directed-family-hom-Poset _) ( λ z y → intro-exists z ( preserves-order-map-hom-Poset P Q f ( family-directed-family-Poset P x u) ( family-directed-family-Poset P x z) ( pr1 y) , preserves-order-map-hom-Poset P Q f ( family-directed-family-Poset P x v) ( family-directed-family-Poset P x z) ( pr2 y))) ( is-directed-family-directed-family-Poset P x u v) directed-family-hom-Poset : directed-family-Poset l5 Q directed-family-hom-Poset = inhabited-type-directed-family-hom-Poset , family-directed-family-hom-Poset , is-directed-family-directed-family-hom-Poset
External links
- Upward directed set at Mathswitch
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).