The unit of Cauchy composition of species of types in subuniverses
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-04-27.
Last modified on 2024-01-14.
module species.unit-cauchy-composition-species-of-types-in-subuniverses where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.global-subuniverses open import foundation.subuniverses open import foundation.universe-levels open import species.species-of-types-in-subuniverses
Idea
Given a global subuniverse closed under is-contr
, we define the unit of the
Cauchy composition of species of types in a subuniverse by
X ↦ is-contr X.
Definition
module _ {l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) (C4 : is-closed-under-is-contr-subuniverses P ( subuniverse-global-subuniverse Q l1)) where cauchy-composition-unit-species-subuniverse : species-subuniverse P (subuniverse-global-subuniverse Q l1) cauchy-composition-unit-species-subuniverse X = (is-contr (inclusion-subuniverse P X) , C4 X)
Recent changes
- 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).
- 2023-11-24. Fredrik Bakke. Global function classes (#890).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-05-16. Fredrik Bakke. Swap from
md
totext
code blocks (#622).