Wild semigroups

Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.

Created on 2022-05-07.
Last modified on 2023-05-28.

module structured-types.wild-semigroups where
Imports
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import structured-types.magmas

Idea

A wild semigroup is a magma of with associative multiplication

Definition

Wild-Semigroup : (l : Level)  UU (lsuc l)
Wild-Semigroup l =
  Σ ( Magma l)
    ( λ M 
      (x y z : type-Magma M) 
      Id (mul-Magma M (mul-Magma M x y) z) (mul-Magma M x (mul-Magma M y z)))

module _
  {l : Level} (G : Wild-Semigroup l)
  where

  magma-Wild-Semigroup : Magma l
  magma-Wild-Semigroup = pr1 G

  type-Wild-Semigroup : UU l
  type-Wild-Semigroup = type-Magma magma-Wild-Semigroup

  mul-Wild-Semigroup : (x y : type-Wild-Semigroup)  type-Wild-Semigroup
  mul-Wild-Semigroup = mul-Magma magma-Wild-Semigroup

  mul-Wild-Semigroup' : (x y : type-Wild-Semigroup)  type-Wild-Semigroup
  mul-Wild-Semigroup' = mul-Magma' magma-Wild-Semigroup

  associative-mul-Wild-Semigroup :
    (x y z : type-Wild-Semigroup) 
    Id
      ( mul-Wild-Semigroup (mul-Wild-Semigroup x y) z)
      ( mul-Wild-Semigroup x (mul-Wild-Semigroup y z))
  associative-mul-Wild-Semigroup = pr2 G

Recent changes