The globular type of functions
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module foundation.globular-type-of-functions where
Imports
open import foundation.globular-type-of-dependent-functions open import foundation.universe-levels open import foundation-core.homotopies open import globular-types.globular-types open import globular-types.reflexive-globular-types open import globular-types.transitive-globular-types
Idea
The globular type of functions¶ is the globular type consisting of functions and homotopies between them. Since functions are dependent functions of constant type families, we define the globular type of functions in terms of the globular type of dependent functions.
The globular type of functions of a type family B
over A
is
reflexive and
transitive, so it is a
noncoherent wild higher precategory.
The structures defined in this file are used to define the noncoherent large wild higher precategory of types.
Definitions
The globular type of functions
function-type-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : UU l2) → Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) function-type-Globular-Type A B = dependent-function-type-Globular-Type A (λ _ → B)
Properties
The globular type of functions is reflexive
is-reflexive-function-type-Globular-Type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-reflexive-Globular-Type (function-type-Globular-Type A B) is-reflexive-function-type-Globular-Type {l1} {l2} {A} {B} = is-reflexive-dependent-function-type-Globular-Type function-type-Reflexive-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : UU l2) → Reflexive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) function-type-Reflexive-Globular-Type A B = dependent-function-type-Reflexive-Globular-Type A (λ _ → B)
The globular type of functions is transitive
is-transitive-function-type-Globular-Type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-transitive-Globular-Type (function-type-Globular-Type A B) is-transitive-function-type-Globular-Type = is-transitive-dependent-function-type-Globular-Type function-type-Transitive-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : UU l2) → Transitive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) function-type-Transitive-Globular-Type A B = dependent-function-type-Transitive-Globular-Type A (λ _ → B)
See also
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).