Triple loop spaces
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-10.
Last modified on 2024-02-19.
module synthetic-homotopy-theory.triple-loop-spaces where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.homotopies open import foundation.identity-types open import foundation.path-algebra open import foundation.universe-levels open import structured-types.pointed-types open import synthetic-homotopy-theory.double-loop-spaces open import synthetic-homotopy-theory.iterated-loop-spaces
Idea
A triple loop space is a three times iterated loop space.
Definition
module _ {l : Level} where Ω³ : Pointed-Type l → Pointed-Type l Ω³ A = iterated-loop-space 3 A type-Ω³ : {A : UU l} (a : A) → UU l type-Ω³ a = Id (refl-Ω² {a = a}) (refl-Ω² {a = a}) refl-Ω³ : {A : UU l} {a : A} → type-Ω³ a refl-Ω³ = refl
Operations
x-concat-Ω³ : {l : Level} {A : UU l} {a : A} → type-Ω³ a → type-Ω³ a → type-Ω³ a x-concat-Ω³ = x-concat-Id³ y-concat-Ω³ : {l : Level} {A : UU l} {a : A} → type-Ω³ a → type-Ω³ a → type-Ω³ a y-concat-Ω³ = y-concat-Id³ z-concat-Ω³ : {l : Level} {A : UU l} {a : A} → type-Ω³ a → type-Ω³ a → type-Ω³ a z-concat-Ω³ = z-concat-Id³ ap-x-concat-Ω³ : {l : Level} {A : UU l} {a : A} {α α' β β' : type-Ω³ a} (s : Id α α') (t : Id β β') → Id (x-concat-Ω³ α β) (x-concat-Ω³ α' β') ap-x-concat-Ω³ s t = ap-binary x-concat-Ω³ s t ap-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} {α α' β β' : type-Ω³ a} (s : Id α α') (t : Id β β') → Id (y-concat-Ω³ α β) (y-concat-Ω³ α' β') ap-y-concat-Ω³ s t = j-concat-Id⁴ s t ap-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} {α α' β β' : type-Ω³ a} (s : Id α α') (t : Id β β') → Id (z-concat-Ω³ α β) (z-concat-Ω³ α' β') ap-z-concat-Ω³ s t = k-concat-Id⁴ s t
Properties
The unit laws for the three concatenations on Ω³
left-unit-law-x-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (x-concat-Ω³ refl-Ω³ α) α left-unit-law-x-concat-Ω³ α = left-unit right-unit-law-x-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (x-concat-Ω³ α refl-Ω³) α right-unit-law-x-concat-Ω³ α = right-unit left-unit-law-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (y-concat-Ω³ refl-Ω³ α) α left-unit-law-y-concat-Ω³ α = left-unit-law-horizontal-concat-Ω² right-unit-law-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (y-concat-Ω³ α refl-Ω³) α right-unit-law-y-concat-Ω³ α = right-unit-law-horizontal-concat-Ω² left-unit-law-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (z-concat-Ω³ refl-Ω³ α) α left-unit-law-z-concat-Ω³ α = ( left-unit-law-z-concat-Id³ α) ∙ ( ( inv right-unit) ∙ ( ( inv-nat-htpy (λ ω → compute-left-refl-horizontal-concat-Id² ω) α) ∙ ( ( inv right-unit) ∙ ( ( inv-nat-htpy ap-id α) ∙ ( ap-id α))))) {- super-naturality-right-unit : {l : Level} {A : UU l} {x y z : A} {p q : Id x y} {α β : Id p q} (γ : Id α β) (u : Id y z) → Id (ap (λ ω → horizontal-concat-Id² ω (refl {x = u})) γ) {!!} super-naturality-right-unit α = {!!} -} {- right-unit-law-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α : type-Ω³ a) → Id (z-concat-Ω³ α refl-Ω³) α right-unit-law-z-concat-Ω³ α = ( right-unit-law-z-concat-Id³ α) ∙ {!!} -} {- ( ( inv right-unit) ∙ ( ( inv-nat-htpy (λ ω → compute-right-refl-horizontal-concat-Id² ω) α) ∙ ( left-unit ∙ ( ( inv right-unit) ∙ ( ( inv-nat-htpy ( λ z → ( inv right-unit) ∙ ( inv-nat-htpy (λ ω → right-unit) z) ∙ ( ap-id z)) α) ∙ ( ap-id α)))))) -}
The interchange laws for Ω³
interchange-x-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α β γ δ : type-Ω³ a) → Id ( y-concat-Ω³ (x-concat-Ω³ α β) (x-concat-Ω³ γ δ)) ( x-concat-Ω³ (y-concat-Ω³ α γ) (y-concat-Ω³ β δ)) interchange-x-y-concat-Ω³ = interchange-x-y-concat-Id³ interchange-x-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α β γ δ : type-Ω³ a) → Id ( z-concat-Ω³ (x-concat-Ω³ α β) (x-concat-Ω³ γ δ)) ( x-concat-Ω³ (z-concat-Ω³ α γ) (z-concat-Ω³ β δ)) interchange-x-z-concat-Ω³ = interchange-x-z-concat-Id³ interchange-y-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α β γ δ : type-Ω³ a) → Id ( z-concat-Ω³ (y-concat-Ω³ α β) (y-concat-Ω³ γ δ)) ( y-concat-Ω³ (z-concat-Ω³ α γ) (z-concat-Ω³ β δ)) interchange-y-z-concat-Ω³ α β γ δ = inv right-unit ∙ interchange-y-z-concat-Id³ α β γ δ
The Eckmann-Hilton connections in Ω³
outer-eckmann-hilton-connection-x-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α δ : type-Ω³ a) → Id (y-concat-Ω³ α δ) (x-concat-Ω³ α δ) outer-eckmann-hilton-connection-x-y-concat-Ω³ α δ = ( j-concat-Id⁴ ( inv (right-unit-law-x-concat-Ω³ α)) ( inv (left-unit-law-x-concat-Ω³ δ))) ∙ ( ( interchange-x-y-concat-Ω³ α refl refl δ) ∙ ( i-concat-Id⁴ ( right-unit-law-y-concat-Ω³ α) ( left-unit-law-y-concat-Ω³ δ))) inner-eckmann-hilton-connection-x-y-concat-Ω³ : {l : Level} {A : UU l} {a : A} (β γ : type-Ω³ a) → Id (y-concat-Ω³ β γ) (x-concat-Ω³ γ β) inner-eckmann-hilton-connection-x-y-concat-Ω³ β γ = ( j-concat-Id⁴ ( inv (left-unit-law-x-concat-Ω³ β)) ( inv (right-unit-law-x-concat-Ω³ γ))) ∙ ( ( interchange-x-y-concat-Ω³ refl β γ refl) ∙ ( i-concat-Id⁴ ( left-unit-law-y-concat-Ω³ γ) ( right-unit-law-y-concat-Ω³ β))) {- outer-eckmann-hilton-connection-x-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α δ : type-Ω³ a) → Id (z-concat-Ω³ α δ) (x-concat-Ω³ α δ) outer-eckmann-hilton-connection-x-z-concat-Ω³ α δ = ( k-concat-Id⁴ ( inv (right-unit-law-x-concat-Ω³ α)) ( inv (left-unit-law-x-concat-Ω³ δ))) ∙ ( ( interchange-x-z-concat-Ω³ α refl refl δ) ∙ ( i-concat-Id⁴ ( right-unit-law-z-concat-Ω³ α) ( left-unit-law-z-concat-Ω³ δ))) -} {- inner-eckmann-hilton-connection-x-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (β γ : type-Ω³ a) → Id (z-concat-Ω³ β γ) (x-concat-Ω³ γ β) inner-eckmann-hilton-connection-x-z-concat-Ω³ β γ = ( k-concat-Id⁴ ( inv (left-unit-law-x-concat-Ω³ β)) ( inv (right-unit-law-x-concat-Ω³ γ))) ∙ ( ( interchange-x-z-concat-Ω³ refl β γ refl) ∙ ( i-concat-Id⁴ ( left-unit-law-z-concat-Ω³ γ) ( right-unit-law-z-concat-Ω³ β))) -} {- outer-eckmann-hilton-connection-y-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (α δ : type-Ω³ a) → Id (z-concat-Ω³ α δ) (y-concat-Ω³ α δ) outer-eckmann-hilton-connection-y-z-concat-Ω³ α δ = ( k-concat-Id⁴ ( inv (right-unit-law-y-concat-Ω³ α)) ( inv (left-unit-law-y-concat-Ω³ δ))) ∙ ( ( interchange-y-z-concat-Ω³ α refl refl δ) ∙ ( j-concat-Id⁴ ( right-unit-law-z-concat-Ω³ α) ( left-unit-law-z-concat-Ω³ δ))) -} {- inner-eckmann-hilton-connection-y-z-concat-Ω³ : {l : Level} {A : UU l} {a : A} (β γ : type-Ω³ a) → Id (z-concat-Ω³ β γ) (y-concat-Ω³ γ β) inner-eckmann-hilton-connection-y-z-concat-Ω³ β γ = ( k-concat-Id⁴ ( inv (left-unit-law-y-concat-Ω³ β)) ( inv (right-unit-law-y-concat-Ω³ γ))) ∙ ( ( interchange-y-z-concat-Ω³ refl β γ refl) ∙ ( j-concat-Id⁴ ( left-unit-law-z-concat-Ω³ γ) ( right-unit-law-z-concat-Ω³ β))) -}
Recent changes
- 2024-02-19. Fredrik Bakke. Higher computational properties of computational identity types (#1026).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).