Inequalities between positive, negative, nonnegative, and nonpositive rational numbers

Content created by Louis Wasserman.

Created on 2025-10-17.
Last modified on 2025-10-17.

module elementary-number-theory.inequalities-positive-and-negative-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.negative-rational-numbers
open import elementary-number-theory.nonnegative-rational-numbers
open import elementary-number-theory.nonpositive-rational-numbers
open import elementary-number-theory.positive-and-negative-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.dependent-pair-types

Idea

This page describes inequalities and strict inequalities between positive, negative, nonnegative, and nonpositive rational numbers.

Properties

Inequalities between rational numbers with different signs

Some inequalities can be deduced directly from the sign of a rational number. For example, every negative rational number is less than every nonnegative rational number.

Any negative rational number is less than any nonnegative rational number

abstract
  le-negative-nonnegative-ℚ :
    (p : ℚ⁻) (q : ℚ⁰⁺)  le-ℚ (rational-ℚ⁻ p) (rational-ℚ⁰⁺ q)
  le-negative-nonnegative-ℚ (p , neg-p) (q , nonneg-q) =
    concatenate-le-leq-ℚ p zero-ℚ q
      ( le-zero-is-negative-ℚ neg-p)
      ( leq-zero-is-nonnegative-ℚ nonneg-q)

  leq-negative-nonnegative-ℚ :
    (p : ℚ⁻) (q : ℚ⁰⁺)  leq-ℚ (rational-ℚ⁻ p) (rational-ℚ⁰⁺ q)
  leq-negative-nonnegative-ℚ p q = leq-le-ℚ (le-negative-nonnegative-ℚ p q)

Any negative rational number is less than any positive rational number

abstract
  le-negative-positive-ℚ :
    (p : ℚ⁻) (q : ℚ⁺)  le-ℚ (rational-ℚ⁻ p) (rational-ℚ⁺ q)
  le-negative-positive-ℚ p q =
    le-negative-nonnegative-ℚ p (nonnegative-ℚ⁺ q)

  leq-negative-positive-ℚ :
    (p : ℚ⁻) (q : ℚ⁺)  leq-ℚ (rational-ℚ⁻ p) (rational-ℚ⁺ q)
  leq-negative-positive-ℚ p q = leq-le-ℚ (le-negative-positive-ℚ p q)

A nonpositive rational number is less than any positive rational number

abstract
  le-nonpositive-positive-ℚ :
    (p : ℚ⁰⁻) (q : ℚ⁺)  le-ℚ (rational-ℚ⁰⁻ p) (rational-ℚ⁺ q)
  le-nonpositive-positive-ℚ (p , nonpos-p) (q , pos-q) =
    concatenate-leq-le-ℚ p zero-ℚ q
      ( leq-zero-is-nonpositive-ℚ nonpos-p)
      ( le-zero-is-positive-ℚ pos-q)

A nonpositive rational number is less than or equal to any nonnegative rational number

abstract
  leq-nonpositive-nonnegative-ℚ :
    (p : ℚ⁰⁻) (q : ℚ⁰⁺)  leq-ℚ (rational-ℚ⁰⁻ p) (rational-ℚ⁰⁺ q)
  leq-nonpositive-nonnegative-ℚ (p , nonpos-p) (q , nonneg-q) =
    transitive-leq-ℚ p zero-ℚ q
      ( leq-zero-is-nonnegative-ℚ nonneg-q)
      ( leq-zero-is-nonpositive-ℚ nonpos-p)

Inequalities showing the sign of a rational number

If p < q and p is nonnegative, then q is positive

abstract
  is-positive-le-ℚ⁰⁺ :
    (p : ℚ⁰⁺) (q : )  le-ℚ (rational-ℚ⁰⁺ p) q  is-positive-ℚ q
  is-positive-le-ℚ⁰⁺ (p , nonneg-p) q p<q =
    is-positive-le-zero-ℚ
      ( concatenate-leq-le-ℚ _ _ _ (leq-zero-is-nonnegative-ℚ nonneg-p) p<q)

If p < q and q is nonpositive, then p is negative

abstract
  is-negative-le-ℚ⁰⁻ :
    (q : ℚ⁰⁻) (p : )  le-ℚ p (rational-ℚ⁰⁻ q)  is-negative-ℚ p
  is-negative-le-ℚ⁰⁻ (q , nonpos-q) p p<q =
    is-negative-le-zero-ℚ
      ( concatenate-le-leq-ℚ p q zero-ℚ
        ( p<q)
        ( leq-zero-is-nonpositive-ℚ nonpos-q))

Recent changes