Connective spectra
Content created by Fredrik Bakke.
Created on 2024-10-18.
Last modified on 2024-10-18.
module synthetic-homotopy-theory.connective-spectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.truncation-levels open import foundation.universe-levels open import structured-types.pointed-equivalences open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.connective-prespectra open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.prespectra open import synthetic-homotopy-theory.spectra open import synthetic-homotopy-theory.suspensions-of-pointed-types open import synthetic-homotopy-theory.suspensions-of-types
Idea
A spectrum is connective¶ if the underlying prespectrum is connective. I.e., if the th type in the sequence is -connected for all .
The predicate on spectra of being connective
module _ {l : Level} (A : Spectrum l) where is-connective-Spectrum : UU l is-connective-Spectrum = is-connective-Prespectrum (prespectrum-Spectrum A) is-prop-is-connective-Spectrum : is-prop is-connective-Spectrum is-prop-is-connective-Spectrum = is-prop-is-connective-Prespectrum (prespectrum-Spectrum A) is-connective-prop-Spectrum : Prop l is-connective-prop-Spectrum = is-connective-Spectrum , is-prop-is-connective-Spectrum
The type of connective spectra
Connective-Spectrum : (l : Level) → UU (lsuc l) Connective-Spectrum l = Σ (Spectrum l) (is-connective-Spectrum) module _ {l : Level} (A : Connective-Spectrum l) where spectrum-Connective-Spectrum : Spectrum l spectrum-Connective-Spectrum = pr1 A pointed-type-Connective-Spectrum : ℕ → Pointed-Type l pointed-type-Connective-Spectrum = pointed-type-Spectrum spectrum-Connective-Spectrum type-Connective-Spectrum : ℕ → UU l type-Connective-Spectrum = type-Spectrum spectrum-Connective-Spectrum point-Connective-Spectrum : (n : ℕ) → type-Connective-Spectrum n point-Connective-Spectrum = point-Spectrum spectrum-Connective-Spectrum pointed-adjoint-structure-map-Connective-Spectrum : (n : ℕ) → pointed-type-Connective-Spectrum n →∗ Ω (pointed-type-Connective-Spectrum (succ-ℕ n)) pointed-adjoint-structure-map-Connective-Spectrum = pointed-adjoint-structure-map-Spectrum spectrum-Connective-Spectrum adjoint-structure-map-Connective-Spectrum : (n : ℕ) → type-Connective-Spectrum n → type-Ω (pointed-type-Connective-Spectrum (succ-ℕ n)) adjoint-structure-map-Connective-Spectrum = adjoint-structure-map-Spectrum spectrum-Connective-Spectrum preserves-point-adjoint-structure-map-Connective-Spectrum : (n : ℕ) → adjoint-structure-map-Spectrum (pr1 A) n (point-Spectrum (pr1 A) n) = refl-Ω (pointed-type-Spectrum (pr1 A) (succ-ℕ n)) preserves-point-adjoint-structure-map-Connective-Spectrum = preserves-point-adjoint-structure-map-Spectrum spectrum-Connective-Spectrum is-equiv-pointed-adjoint-structure-map-Connective-Spectrum : (n : ℕ) → is-pointed-equiv (pointed-adjoint-structure-map-Connective-Spectrum n) is-equiv-pointed-adjoint-structure-map-Connective-Spectrum = is-equiv-pointed-adjoint-structure-map-Spectrum spectrum-Connective-Spectrum structure-equiv-Connective-Spectrum : (n : ℕ) → type-Connective-Spectrum n ≃ type-Ω (pointed-type-Connective-Spectrum (succ-ℕ n)) structure-equiv-Connective-Spectrum n = adjoint-structure-map-Connective-Spectrum n , is-equiv-pointed-adjoint-structure-map-Connective-Spectrum n pointed-structure-equiv-Connective-Spectrum : (n : ℕ) → pointed-type-Connective-Spectrum n ≃∗ Ω (pointed-type-Connective-Spectrum (succ-ℕ n)) pointed-structure-equiv-Connective-Spectrum n = structure-equiv-Connective-Spectrum n , preserves-point-adjoint-structure-map-Connective-Spectrum n is-connective-Connective-Spectrum : is-connective-Spectrum spectrum-Connective-Spectrum is-connective-Connective-Spectrum = pr2 A
The structure maps of a connective spectrum
module _ {l : Level} (A : Connective-Spectrum l) (n : ℕ) where pointed-structure-map-Connective-Spectrum : suspension-Pointed-Type (pointed-type-Connective-Spectrum A n) →∗ pointed-type-Connective-Spectrum A (succ-ℕ n) pointed-structure-map-Connective-Spectrum = pointed-structure-map-Spectrum (spectrum-Connective-Spectrum A) n structure-map-Connective-Spectrum : suspension (type-Connective-Spectrum A n) → type-Connective-Spectrum A (succ-ℕ n) structure-map-Connective-Spectrum = map-pointed-map pointed-structure-map-Connective-Spectrum preserves-point-structure-map-Connective-Spectrum : structure-map-Connective-Spectrum north-suspension = point-Connective-Spectrum A (succ-ℕ n) preserves-point-structure-map-Connective-Spectrum = preserves-point-pointed-map pointed-structure-map-Connective-Spectrum
External links
- connective spectrum at Lab
Recent changes
- 2024-10-18. Fredrik Bakke. Abelian ∞-groups (#1178).