Connective spectra

Content created by Fredrik Bakke.

Created on 2024-10-18.
Last modified on 2024-10-18.

module synthetic-homotopy-theory.connective-spectra where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.connected-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.truncation-levels
open import foundation.universe-levels

open import structured-types.pointed-equivalences
open import structured-types.pointed-maps
open import structured-types.pointed-types

open import synthetic-homotopy-theory.connective-prespectra
open import synthetic-homotopy-theory.loop-spaces
open import synthetic-homotopy-theory.prespectra
open import synthetic-homotopy-theory.spectra
open import synthetic-homotopy-theory.suspensions-of-pointed-types
open import synthetic-homotopy-theory.suspensions-of-types

Idea

A spectrum is connective if the underlying prespectrum is connective. I.e., if the th type in the sequence is -connected for all .

The predicate on spectra of being connective

module _
  {l : Level} (A : Spectrum l)
  where

  is-connective-Spectrum : UU l
  is-connective-Spectrum = is-connective-Prespectrum (prespectrum-Spectrum A)

  is-prop-is-connective-Spectrum : is-prop is-connective-Spectrum
  is-prop-is-connective-Spectrum =
    is-prop-is-connective-Prespectrum (prespectrum-Spectrum A)

  is-connective-prop-Spectrum : Prop l
  is-connective-prop-Spectrum =
    is-connective-Spectrum , is-prop-is-connective-Spectrum

The type of connective spectra

Connective-Spectrum : (l : Level)  UU (lsuc l)
Connective-Spectrum l = Σ (Spectrum l) (is-connective-Spectrum)

module _
  {l : Level} (A : Connective-Spectrum l)
  where

  spectrum-Connective-Spectrum : Spectrum l
  spectrum-Connective-Spectrum = pr1 A

  pointed-type-Connective-Spectrum :   Pointed-Type l
  pointed-type-Connective-Spectrum =
    pointed-type-Spectrum spectrum-Connective-Spectrum

  type-Connective-Spectrum :   UU l
  type-Connective-Spectrum =
    type-Spectrum spectrum-Connective-Spectrum

  point-Connective-Spectrum : (n : )  type-Connective-Spectrum n
  point-Connective-Spectrum =
    point-Spectrum spectrum-Connective-Spectrum

  pointed-adjoint-structure-map-Connective-Spectrum :
    (n : ) 
    pointed-type-Connective-Spectrum n →∗
    Ω (pointed-type-Connective-Spectrum (succ-ℕ n))
  pointed-adjoint-structure-map-Connective-Spectrum =
    pointed-adjoint-structure-map-Spectrum spectrum-Connective-Spectrum

  adjoint-structure-map-Connective-Spectrum :
    (n : ) 
    type-Connective-Spectrum n 
    type-Ω (pointed-type-Connective-Spectrum (succ-ℕ n))
  adjoint-structure-map-Connective-Spectrum =
    adjoint-structure-map-Spectrum spectrum-Connective-Spectrum

  preserves-point-adjoint-structure-map-Connective-Spectrum :
    (n : ) 
    adjoint-structure-map-Spectrum (pr1 A) n (point-Spectrum (pr1 A) n) 
    refl-Ω (pointed-type-Spectrum (pr1 A) (succ-ℕ n))
  preserves-point-adjoint-structure-map-Connective-Spectrum =
    preserves-point-adjoint-structure-map-Spectrum
      spectrum-Connective-Spectrum

  is-equiv-pointed-adjoint-structure-map-Connective-Spectrum :
    (n : ) 
    is-pointed-equiv (pointed-adjoint-structure-map-Connective-Spectrum n)
  is-equiv-pointed-adjoint-structure-map-Connective-Spectrum =
    is-equiv-pointed-adjoint-structure-map-Spectrum spectrum-Connective-Spectrum

  structure-equiv-Connective-Spectrum :
    (n : ) 
    type-Connective-Spectrum n 
    type-Ω (pointed-type-Connective-Spectrum (succ-ℕ n))
  structure-equiv-Connective-Spectrum n =
    adjoint-structure-map-Connective-Spectrum n ,
    is-equiv-pointed-adjoint-structure-map-Connective-Spectrum n

  pointed-structure-equiv-Connective-Spectrum :
    (n : ) 
    pointed-type-Connective-Spectrum n ≃∗
    Ω (pointed-type-Connective-Spectrum (succ-ℕ n))
  pointed-structure-equiv-Connective-Spectrum n =
    structure-equiv-Connective-Spectrum n ,
    preserves-point-adjoint-structure-map-Connective-Spectrum n

  is-connective-Connective-Spectrum :
    is-connective-Spectrum spectrum-Connective-Spectrum
  is-connective-Connective-Spectrum = pr2 A

The structure maps of a connective spectrum

module _
  {l : Level} (A : Connective-Spectrum l) (n : )
  where

  pointed-structure-map-Connective-Spectrum :
    suspension-Pointed-Type (pointed-type-Connective-Spectrum A n) →∗
    pointed-type-Connective-Spectrum A (succ-ℕ n)
  pointed-structure-map-Connective-Spectrum =
    pointed-structure-map-Spectrum (spectrum-Connective-Spectrum A) n

  structure-map-Connective-Spectrum :
    suspension (type-Connective-Spectrum A n) 
    type-Connective-Spectrum A (succ-ℕ n)
  structure-map-Connective-Spectrum =
    map-pointed-map pointed-structure-map-Connective-Spectrum

  preserves-point-structure-map-Connective-Spectrum :
    structure-map-Connective-Spectrum north-suspension 
    point-Connective-Spectrum A (succ-ℕ n)
  preserves-point-structure-map-Connective-Spectrum =
    preserves-point-pointed-map pointed-structure-map-Connective-Spectrum

Recent changes