Maps fibered over a map
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-08.
Last modified on 2024-04-25.
module foundation.fibered-maps where
Imports
open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopy-induction open import foundation.slice open import foundation.structure-identity-principle open import foundation.type-arithmetic-dependent-pair-types open import foundation.unit-type open import foundation.universal-property-empty-type open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.small-types open import foundation-core.torsorial-type-families open import foundation-core.truncated-types open import foundation-core.truncation-levels
Idea
Consider a diagram of the form
A B
| |
f | | g
∨ ∨
X ------> Y
i
A fibered map from f
to g
over i
is a map h : A → B
such that the
square i ∘ f ~ g ∘ h
commutes.
Definitions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where is-map-over : (X → Y) → (A → B) → UU (l1 ⊔ l4) is-map-over i h = coherence-square-maps h f g i map-over : (X → Y) → UU (l1 ⊔ l2 ⊔ l4) map-over i = Σ (A → B) (is-map-over i) fibered-map : UU (l1 ⊔ l3 ⊔ l2 ⊔ l4) fibered-map = Σ (X → Y) (map-over) fiberwise-map-over : (X → Y) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) fiberwise-map-over i = (x : X) → fiber f x → fiber g (i x) cone-fibered-map : (ihH : fibered-map) → cone (pr1 ihH) g A pr1 (cone-fibered-map ihH) = f pr1 (pr2 (cone-fibered-map (i , h , H))) = h pr2 (pr2 (cone-fibered-map (i , h , H))) = H module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where map-total-map-over : (i : X → Y) → map-over f g i → A → B map-total-map-over i = pr1 is-map-over-map-total-map-over : (i : X → Y) (m : map-over f g i) → is-map-over f g i (map-total-map-over i m) is-map-over-map-total-map-over i = pr2 map-over-fibered-map : (m : fibered-map f g) → map-over f g (pr1 m) map-over-fibered-map = pr2 map-base-fibered-map : (m : fibered-map f g) → X → Y map-base-fibered-map = pr1 map-total-fibered-map : (m : fibered-map f g) → A → B map-total-fibered-map = pr1 ∘ pr2 is-map-over-map-total-fibered-map : (m : fibered-map f g) → is-map-over f g (map-base-fibered-map m) (map-total-fibered-map m) is-map-over-map-total-fibered-map = pr2 ∘ pr2
Properties
Identifications of maps over
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) (i : X → Y) where coherence-htpy-map-over : (m m' : map-over f g i) → map-total-map-over f g i m ~ map-total-map-over f g i m' → UU (l1 ⊔ l4) coherence-htpy-map-over m m' K = ( is-map-over-map-total-map-over f g i m ∙h (g ·l K)) ~ ( is-map-over-map-total-map-over f g i m') htpy-map-over : (m m' : map-over f g i) → UU (l1 ⊔ l2 ⊔ l4) htpy-map-over m m' = Σ ( map-total-map-over f g i m ~ map-total-map-over f g i m') ( coherence-htpy-map-over m m') refl-htpy-map-over : (m : map-over f g i) → htpy-map-over m m pr1 (refl-htpy-map-over m) = refl-htpy pr2 (refl-htpy-map-over m) = right-unit-htpy htpy-eq-map-over : (m m' : map-over f g i) → m = m' → htpy-map-over m m' htpy-eq-map-over m .m refl = refl-htpy-map-over m is-torsorial-htpy-map-over : (m : map-over f g i) → is-torsorial (htpy-map-over m) is-torsorial-htpy-map-over m = is-torsorial-Eq-structure ( is-torsorial-htpy (map-total-map-over f g i m)) ( map-total-map-over f g i m , refl-htpy) ( is-torsorial-htpy (is-map-over-map-total-map-over f g i m ∙h refl-htpy)) is-equiv-htpy-eq-map-over : (m m' : map-over f g i) → is-equiv (htpy-eq-map-over m m') is-equiv-htpy-eq-map-over m = fundamental-theorem-id (is-torsorial-htpy-map-over m) (htpy-eq-map-over m) extensionality-map-over : (m m' : map-over f g i) → (m = m') ≃ (htpy-map-over m m') pr1 (extensionality-map-over m m') = htpy-eq-map-over m m' pr2 (extensionality-map-over m m') = is-equiv-htpy-eq-map-over m m' eq-htpy-map-over : (m m' : map-over f g i) → htpy-map-over m m' → m = m' eq-htpy-map-over m m' = map-inv-equiv (extensionality-map-over m m')
Identifications of fibered maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where coherence-htpy-fibered-map : (m m' : fibered-map f g) → map-base-fibered-map f g m ~ map-base-fibered-map f g m' → map-total-fibered-map f g m ~ map-total-fibered-map f g m' → UU (l1 ⊔ l4) coherence-htpy-fibered-map m m' I H = ( is-map-over-map-total-fibered-map f g m ∙h (g ·l H)) ~ ( (I ·r f) ∙h is-map-over-map-total-fibered-map f g m') htpy-fibered-map : (m m' : fibered-map f g) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-fibered-map m m' = Σ ( map-base-fibered-map f g m ~ map-base-fibered-map f g m') ( λ I → Σ ( map-total-fibered-map f g m ~ map-total-fibered-map f g m') ( coherence-htpy-fibered-map m m' I)) refl-htpy-fibered-map : (m : fibered-map f g) → htpy-fibered-map m m pr1 (refl-htpy-fibered-map m) = refl-htpy pr1 (pr2 (refl-htpy-fibered-map m)) = refl-htpy pr2 (pr2 (refl-htpy-fibered-map m)) = inv-htpy-left-unit-htpy ∙h right-unit-htpy htpy-eq-fibered-map : (m m' : fibered-map f g) → m = m' → htpy-fibered-map m m' htpy-eq-fibered-map m .m refl = refl-htpy-fibered-map m is-torsorial-htpy-fibered-map : (m : fibered-map f g) → is-torsorial (htpy-fibered-map m) is-torsorial-htpy-fibered-map m = is-torsorial-Eq-structure ( is-torsorial-htpy (map-base-fibered-map f g m)) ( map-base-fibered-map f g m , refl-htpy) ( is-torsorial-Eq-structure ( is-torsorial-htpy (map-total-fibered-map f g m)) ( map-total-fibered-map f g m , refl-htpy) ( is-torsorial-htpy ( is-map-over-map-total-fibered-map f g m ∙h refl-htpy))) is-equiv-htpy-eq-fibered-map : (m m' : fibered-map f g) → is-equiv (htpy-eq-fibered-map m m') is-equiv-htpy-eq-fibered-map m = fundamental-theorem-id ( is-torsorial-htpy-fibered-map m) ( htpy-eq-fibered-map m) extensionality-fibered-map : (m m' : fibered-map f g) → (m = m') ≃ (htpy-fibered-map m m') pr1 (extensionality-fibered-map m m') = htpy-eq-fibered-map m m' pr2 (extensionality-fibered-map m m') = is-equiv-htpy-eq-fibered-map m m' eq-htpy-fibered-map : (m m' : fibered-map f g) → htpy-fibered-map m m' → m = m' eq-htpy-fibered-map m m' = map-inv-equiv (extensionality-fibered-map m m')
Fibered maps and fiberwise maps over are equivalent notions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) (i : X → Y) where fiberwise-map-over-map-over : map-over f g i → fiberwise-map-over f g i pr1 (fiberwise-map-over-map-over (h , H) .(f a) (a , refl)) = h a pr2 (fiberwise-map-over-map-over (h , H) .(f a) (a , refl)) = inv (H a) map-over-fiberwise-map-over : fiberwise-map-over f g i → map-over f g i pr1 (map-over-fiberwise-map-over α) a = pr1 (α (f a) (pair a refl)) pr2 (map-over-fiberwise-map-over α) a = inv (pr2 (α (f a) (pair a refl))) is-section-map-over-fiberwise-map-over-eq-htpy : (α : fiberwise-map-over f g i) (x : X) → fiberwise-map-over-map-over (map-over-fiberwise-map-over α) x ~ α x is-section-map-over-fiberwise-map-over-eq-htpy α .(f a) (pair a refl) = eq-pair-eq-fiber (inv-inv (pr2 (α (f a) (pair a refl)))) is-section-map-over-fiberwise-map-over : fiberwise-map-over-map-over ∘ map-over-fiberwise-map-over ~ id is-section-map-over-fiberwise-map-over α = eq-htpy (eq-htpy ∘ is-section-map-over-fiberwise-map-over-eq-htpy α) is-retraction-map-over-fiberwise-map-over : map-over-fiberwise-map-over ∘ fiberwise-map-over-map-over ~ id is-retraction-map-over-fiberwise-map-over (pair h H) = eq-pair-eq-fiber (eq-htpy (inv-inv ∘ H)) abstract is-equiv-fiberwise-map-over-map-over : is-equiv (fiberwise-map-over-map-over) is-equiv-fiberwise-map-over-map-over = is-equiv-is-invertible ( map-over-fiberwise-map-over) ( is-section-map-over-fiberwise-map-over) ( is-retraction-map-over-fiberwise-map-over) abstract is-equiv-map-over-fiberwise-map-over : is-equiv (map-over-fiberwise-map-over) is-equiv-map-over-fiberwise-map-over = is-equiv-is-invertible ( fiberwise-map-over-map-over) ( is-retraction-map-over-fiberwise-map-over) ( is-section-map-over-fiberwise-map-over) equiv-fiberwise-map-over-map-over : map-over f g i ≃ fiberwise-map-over f g i pr1 equiv-fiberwise-map-over-map-over = fiberwise-map-over-map-over pr2 equiv-fiberwise-map-over-map-over = is-equiv-fiberwise-map-over-map-over equiv-map-over-fiberwise-map-over : fiberwise-map-over f g i ≃ map-over f g i pr1 equiv-map-over-fiberwise-map-over = map-over-fiberwise-map-over pr2 equiv-map-over-fiberwise-map-over = is-equiv-map-over-fiberwise-map-over equiv-map-over-fiberwise-hom : fiberwise-hom (i ∘ f) g ≃ map-over f g i equiv-map-over-fiberwise-hom = equiv-hom-slice-fiberwise-hom (i ∘ f) g equiv-fiberwise-map-over-fiberwise-hom : fiberwise-hom (i ∘ f) g ≃ fiberwise-map-over f g i equiv-fiberwise-map-over-fiberwise-hom = equiv-fiberwise-map-over-map-over ∘e equiv-map-over-fiberwise-hom is-small-fiberwise-map-over : is-small (l1 ⊔ l2 ⊔ l4) (fiberwise-map-over f g i) pr1 is-small-fiberwise-map-over = map-over f g i pr2 is-small-fiberwise-map-over = equiv-map-over-fiberwise-map-over
Slice maps are equal to fibered maps over
eq-map-over-id-hom-slice : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) → hom-slice f g = map-over f g id eq-map-over-id-hom-slice f g = refl eq-map-over-hom-slice : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) (i : X → Y) → hom-slice (i ∘ f) g = map-over f g i eq-map-over-hom-slice f g i = refl
Horizontal composition for fibered maps
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} {f : A → X} {g : B → Y} {h : C → Z} where is-map-over-pasting-horizontal : {k : X → Y} {l : Y → Z} {i : A → B} {j : B → C} → is-map-over f g k i → is-map-over g h l j → is-map-over f h (l ∘ k) (j ∘ i) is-map-over-pasting-horizontal {k} {l} {i} {j} = pasting-horizontal-coherence-square-maps i j f g h k l map-over-pasting-horizontal : {k : X → Y} {l : Y → Z} → map-over f g k → map-over g h l → map-over f h (l ∘ k) pr1 (map-over-pasting-horizontal {k} {l} (i , I) (j , J)) = j ∘ i pr2 (map-over-pasting-horizontal {k} {l} (i , I) (j , J)) = is-map-over-pasting-horizontal {k} {l} I J fibered-map-pasting-horizontal : fibered-map f g → fibered-map g h → fibered-map f h pr1 (fibered-map-pasting-horizontal (k , iI) (l , jJ)) = l ∘ k pr2 (fibered-map-pasting-horizontal (k , iI) (l , jJ)) = map-over-pasting-horizontal {k} {l} iI jJ
Vertical composition for fibered maps
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {X : UU l5} {Y : UU l6} {i : A → B} {j : C → D} {k : X → Y} where is-map-over-pasting-vertical : {f : A → C} {g : B → D} {f' : C → X} {g' : D → Y} → is-map-over f g j i → is-map-over f' g' k j → is-map-over (f' ∘ f) (g' ∘ g) k i is-map-over-pasting-vertical {f} {g} {f'} {g'} = pasting-vertical-coherence-square-maps i f g j f' g' k
The truncation level of the types of fibered maps is bounded by the truncation level of the codomains
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where is-trunc-is-map-over : (k : 𝕋) → is-trunc (succ-𝕋 k) Y → (f : A → X) (g : B → Y) (i : X → Y) (h : A → B) → is-trunc k (is-map-over f g i h) is-trunc-is-map-over k is-trunc-Y f g i h = is-trunc-Π k (λ x → is-trunc-Y (i (f x)) (g (h x))) is-trunc-map-over : (k : 𝕋) → is-trunc (succ-𝕋 k) Y → is-trunc k B → (f : A → X) (g : B → Y) (i : X → Y) → is-trunc k (map-over f g i) is-trunc-map-over k is-trunc-Y is-trunc-B f g i = is-trunc-Σ ( is-trunc-function-type k is-trunc-B) ( is-trunc-is-map-over k is-trunc-Y f g i) is-trunc-fibered-map : (k : 𝕋) → is-trunc k Y → is-trunc k B → (f : A → X) (g : B → Y) → is-trunc k (fibered-map f g) is-trunc-fibered-map k is-trunc-Y is-trunc-B f g = is-trunc-Σ ( is-trunc-function-type k is-trunc-Y) ( is-trunc-map-over ( k) ( is-trunc-succ-is-trunc k is-trunc-Y) ( is-trunc-B) ( f) ( g))
The transpose of a fibered map
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where transpose-is-map-over : (f : A → X) (g : B → Y) (i : X → Y) (h : A → B) → is-map-over f g i h → is-map-over h i g f transpose-is-map-over f g i h = inv-htpy transpose-map-over : (f : A → X) (g : B → Y) (i : X → Y) (hH : map-over f g i) → map-over (pr1 hH) i g pr1 (transpose-map-over f g i hH) = f pr2 (transpose-map-over f g i (h , H)) = transpose-is-map-over f g i h H transpose-fibered-map : (f : A → X) (g : B → Y) (ihH : fibered-map f g) → fibered-map (pr1 (pr2 ihH)) (pr1 ihH) pr1 (transpose-fibered-map f g ihH) = g pr2 (transpose-fibered-map f g (i , hH)) = transpose-map-over f g i hH
If the top left corner is empty, the type of fibered maps is equivalent to maps X → Y
!
empty ---> B
| |
! | | g
∨ ∨
X -----> Y
i
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) (is-empty-A : is-empty A) where inv-compute-fibered-map-is-empty : (fibered-map f g) ≃ (X → Y) inv-compute-fibered-map-is-empty = right-unit-law-Σ-is-contr ( λ i → is-contr-Σ ( universal-property-empty-is-empty A is-empty-A B) ( ex-falso ∘ is-empty-A) ( dependent-universal-property-empty-is-empty A is-empty-A ( eq-value (i ∘ f) (g ∘ ex-falso ∘ is-empty-A)))) compute-fibered-map-is-empty : (X → Y) ≃ (fibered-map f g) compute-fibered-map-is-empty = inv-equiv inv-compute-fibered-map-is-empty module _ { l2 l3 l4 : Level} {B : UU l2} {X : UU l3} {Y : UU l4} {f : empty → X} (g : B → Y) where inv-compute-fibered-map-empty : (fibered-map f g) ≃ (X → Y) inv-compute-fibered-map-empty = inv-compute-fibered-map-is-empty f g id compute-fibered-map-empty : (X → Y) ≃ (fibered-map f g) compute-fibered-map-empty = compute-fibered-map-is-empty f g id
If the bottom right corner is contractible, the type of fibered maps is equivalent to maps A → B
A -----> B
| |
f | | !
∨ ∨
X ---> unit
!
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) (is-contr-Y : is-contr Y) where inv-compute-fibered-map-is-contr : (fibered-map f g) ≃ (A → B) inv-compute-fibered-map-is-contr = ( right-unit-law-Σ-is-contr ( λ j → is-contr-Π ( λ x → is-prop-is-contr is-contr-Y (center is-contr-Y) (g (j x))))) ∘e ( left-unit-law-Σ-is-contr ( is-contr-function-type is-contr-Y) ( λ _ → center is-contr-Y)) compute-fibered-map-is-contr : (A → B) ≃ (fibered-map f g) compute-fibered-map-is-contr = inv-equiv inv-compute-fibered-map-is-contr module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) {g : B → unit} where inv-compute-fibered-map-unit : (fibered-map f g) ≃ (A → B) inv-compute-fibered-map-unit = inv-compute-fibered-map-is-contr f g is-contr-unit compute-fibered-map-unit : (A → B) ≃ (fibered-map f g) compute-fibered-map-unit = compute-fibered-map-is-contr f g is-contr-unit
Examples
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (h : A → B) where is-fibered-over-self : is-map-over id id h h is-fibered-over-self = refl-htpy self-map-over : map-over id id h pr1 self-map-over = h pr2 self-map-over = is-fibered-over-self self-fibered-map : fibered-map id id pr1 self-fibered-map = h pr2 self-fibered-map = self-map-over is-map-over-id : is-map-over h h id id is-map-over-id = refl-htpy id-map-over : map-over h h id pr1 id-map-over = id pr2 id-map-over = is-map-over-id id-fibered-map : fibered-map h h pr1 id-fibered-map = id pr2 id-fibered-map = id-map-over
See also
- Morphisms of arrows for the same concept under a different name.
- For the pullback property of the type of fibered maps, see the pullback-hom
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2024-01-11. Fredrik Bakke. Make type family implicit for
is-torsorial-Eq-structure
andis-torsorial-Eq-Π
(#995).