The flat modality
Content created by Fredrik Bakke.
Created on 2023-11-24.
Last modified on 2024-09-23.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.flat-modality where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.retractions open import foundation.sections open import foundation.universe-levels
Idea
The flat modality¶ is an axiomatized comonadic modality we adjoin to our type theory by use of crisp type theory.
Definition
The flat operator on types
data ♭ {@♭ l : Level} (@♭ A : UU l) : UU l where intro-flat : @♭ A → ♭ A flat : {@♭ l : Level} (@♭ A : UU l) → UU l flat = ♭
The flat counit
counit-flat : {@♭ l : Level} {@♭ A : UU l} → ♭ A → A counit-flat (intro-flat x) = x
Flat dependent elimination
ind-flat : {@♭ l1 : Level} {@♭ A : UU l1} {l2 : Level} (C : ♭ A → UU l2) → ((@♭ u : A) → C (intro-flat u)) → (x : ♭ A) → C x ind-flat C f (intro-flat x) = f x
Flat elimination
rec-flat : {@♭ l1 : Level} {l2 : Level} {@♭ A : UU l1} {C : UU l2} → (@♭ A → C) → ♭ A → C rec-flat {C = C} = ind-flat (λ _ → C)
Crispening statements
crispen : {@♭ l1 : Level} {l2 : Level} {@♭ A : UU l1} {P : A → UU l2} → ((x : A) → P x) → ((@♭ x : A) → P x) crispen f x = f x
The associated family over ♭ A
to a type family defined on crisp elements of A
family-over-flat : {@♭ l1 l2 : Level} {@♭ A : UU l1} (@♭ P : @♭ A → UU l2) → ♭ A → UU l2 family-over-flat P (intro-flat x) = P x
Properties
The flat modality is idempotent
module _ {@♭ l : Level} {@♭ A : UU l} where is-crisp-section-intro-flat : (@♭ x : A) → counit-flat (intro-flat x) = x is-crisp-section-intro-flat _ = refl is-crisp-retraction-intro-flat : (@♭ x : ♭ A) → intro-flat (counit-flat x) = x is-crisp-retraction-intro-flat (intro-flat _) = refl
The equivalence ♭ A ≃ ♭ (♭ A)
module _ {@♭ l : Level} {@♭ A : UU l} where diagonal-flat : ♭ A → ♭ (♭ A) diagonal-flat (intro-flat x) = intro-flat (intro-flat x) is-retraction-diagonal-flat : is-retraction counit-flat diagonal-flat is-retraction-diagonal-flat (intro-flat (intro-flat _)) = refl is-section-diagonal-flat : is-section counit-flat diagonal-flat is-section-diagonal-flat (intro-flat _) = refl section-diagonal-flat : section diagonal-flat pr1 section-diagonal-flat = counit-flat pr2 section-diagonal-flat = is-retraction-diagonal-flat retraction-diagonal-flat : retraction diagonal-flat pr1 retraction-diagonal-flat = counit-flat pr2 retraction-diagonal-flat = is-section-diagonal-flat abstract is-equiv-diagonal-flat : is-equiv diagonal-flat pr1 is-equiv-diagonal-flat = section-diagonal-flat pr2 is-equiv-diagonal-flat = retraction-diagonal-flat equiv-diagonal-flat : ♭ A ≃ ♭ (♭ A) pr1 equiv-diagonal-flat = diagonal-flat pr2 equiv-diagonal-flat = is-equiv-diagonal-flat
The equivalence ♭ (♭ A) ≃ ♭ A
section-flat-counit-flat : section (counit-flat {A = ♭ A}) pr1 section-flat-counit-flat = diagonal-flat pr2 section-flat-counit-flat = is-section-diagonal-flat retraction-flat-counit-flat : retraction (counit-flat {A = ♭ A}) pr1 retraction-flat-counit-flat = diagonal-flat pr2 retraction-flat-counit-flat = is-retraction-diagonal-flat abstract is-equiv-flat-counit-flat : is-equiv (counit-flat {A = ♭ A}) pr1 is-equiv-flat-counit-flat = section-flat-counit-flat pr2 is-equiv-flat-counit-flat = retraction-flat-counit-flat equiv-flat-counit-flat : ♭ (♭ A) ≃ ♭ A equiv-flat-counit-flat = inv-equiv equiv-diagonal-flat
See also
- In the flat-sharp adjunction we postulate that the flat modality is left adjoint to the sharp modality.
- Flat discrete crisp types for crisp types that are flat modal.
References
- [Lic]
- Dan Licata. Dlicata335/cohesion-agda. GitHub repository. URL: https://github.com/dlicata335/cohesion-agda.
- [Shu18]
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.
External links
- Flat Modality at the Agda documentation pages
- flat modality at Lab
Recent changes
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).