Similarity of real numbers
Content created by Louis Wasserman.
Created on 2025-02-08.
Last modified on 2025-02-08.
module real-numbers.similarity-real-numbers where
Imports
open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.powersets open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import order-theory.large-posets open import order-theory.similarity-of-elements-large-posets open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers
Idea
Two Dedekind real numbers are similar¶ if they are less than or equal to each other. The similarity relation on real numbers extends the equality relation to real numbers of differing universe levels.
Definition
sim-prop-ℝ : {l1 l2 : Level} → ℝ l1 → ℝ l2 → Prop (l1 ⊔ l2) sim-prop-ℝ = sim-prop-Large-Poset ℝ-Large-Poset sim-ℝ : {l1 l2 : Level} → ℝ l1 → ℝ l2 → UU (l1 ⊔ l2) sim-ℝ x y = type-Prop (sim-prop-ℝ x y)
Properties
Similarity in the real numbers is equivalent to similarity of lower cuts
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where sim-lower-cut-iff-sim-ℝ : sim-subtype (lower-cut-ℝ x) (lower-cut-ℝ y) ↔ sim-ℝ x y sim-lower-cut-iff-sim-ℝ = id-iff
Similarity in the real numbers is equivalent to similarity of upper cuts
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where sim-upper-cut-iff-sim-ℝ : sim-subtype (upper-cut-ℝ x) (upper-cut-ℝ y) ↔ sim-ℝ x y pr1 (pr1 sim-upper-cut-iff-sim-ℝ (ux⊆uy , uy⊆ux)) = backward-implication (leq-iff-ℝ' x y) uy⊆ux pr2 (pr1 sim-upper-cut-iff-sim-ℝ (ux⊆uy , uy⊆ux)) = backward-implication (leq-iff-ℝ' y x) ux⊆uy pr1 (pr2 sim-upper-cut-iff-sim-ℝ (lx⊆ly , ly⊆lx)) = forward-implication (leq-iff-ℝ' y x) ly⊆lx pr2 (pr2 sim-upper-cut-iff-sim-ℝ (lx⊆ly , ly⊆lx)) = forward-implication (leq-iff-ℝ' x y) lx⊆ly
Reflexivity
refl-sim-ℝ : {l : Level} → (x : ℝ l) → sim-ℝ x x refl-sim-ℝ = refl-sim-Large-Poset ℝ-Large-Poset
Transitivity
transitive-sim-ℝ : {l1 l2 l3 : Level} → (x : ℝ l1) → (y : ℝ l2) → (z : ℝ l3) → sim-ℝ y z → sim-ℝ x y → sim-ℝ x z transitive-sim-ℝ = transitive-sim-Large-Poset ℝ-Large-Poset
Similar real numbers in the same universe are equal
eq-sim-ℝ : {l : Level} → (x y : ℝ l) → sim-ℝ x y → x = y eq-sim-ℝ = eq-sim-Large-Poset ℝ-Large-Poset
A rational real is similar to the canonical projection of its rational
sim-rational-ℝ : {l : Level} → (x : Rational-ℝ l) → sim-ℝ (real-rational-ℝ x) (real-ℚ (rational-rational-ℝ x)) pr1 (sim-rational-ℝ (x , q , q∉lx , q∉ux)) p p∈lx = trichotomy-le-ℚ ( p) ( q) ( id) ( λ p=q → ex-falso (q∉lx (tr (is-in-lower-cut-ℝ x) p=q p∈lx))) ( λ q<p → ex-falso (q∉lx (le-lower-cut-ℝ x q p q<p p∈lx))) pr2 (sim-rational-ℝ (x , q , q∉lx , q∉ux)) p p<q = elim-disjunction ( lower-cut-ℝ x p) ( id) ( ex-falso ∘ q∉ux) ( is-located-lower-upper-cut-ℝ x p q p<q)
Recent changes
- 2025-02-08. Louis Wasserman. Rational reals are similar to the projection of their rational (#1305).
- 2025-02-08. Louis Wasserman. Similarity of real numbers (#1301).