Deflationary maps on a poset
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.deflationary-maps-posets where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.deflationary-maps-preorders open import order-theory.order-preserving-maps-posets open import order-theory.posets
Idea
A map on a poset is said to be a deflationary map¶ if the inequality
holds for any element . In other words, a map on a poset is deflationary precisely when the map on its underlying preorder is deflationary. If is also order preserving we say that is a deflationary morphism¶.
Definitions
The predicate of being a deflationary map
module _ {l1 l2 : Level} (P : Poset l1 l2) (f : type-Poset P → type-Poset P) where is-deflationary-prop-map-Poset : Prop (l1 ⊔ l2) is-deflationary-prop-map-Poset = is-deflationary-prop-map-Preorder (preorder-Poset P) f is-deflationary-map-Poset : UU (l1 ⊔ l2) is-deflationary-map-Poset = is-deflationary-map-Preorder (preorder-Poset P) f is-prop-is-deflationary-map-Poset : is-prop is-deflationary-map-Poset is-prop-is-deflationary-map-Poset = is-prop-is-deflationary-map-Preorder (preorder-Poset P) f
The type of deflationary maps on a poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where deflationary-map-Poset : UU (l1 ⊔ l2) deflationary-map-Poset = deflationary-map-Preorder (preorder-Poset P) module _ {l1 l2 : Level} (P : Poset l1 l2) (f : deflationary-map-Poset P) where map-deflationary-map-Poset : type-Poset P → type-Poset P map-deflationary-map-Poset = map-deflationary-map-Preorder (preorder-Poset P) f is-deflationary-deflationary-map-Poset : is-deflationary-map-Poset P map-deflationary-map-Poset is-deflationary-deflationary-map-Poset = is-deflationary-deflationary-map-Preorder (preorder-Poset P) f
The predicate on order preserving maps of being deflationary
module _ {l1 l2 : Level} (P : Poset l1 l2) (f : hom-Poset P P) where is-deflationary-prop-hom-Poset : Prop (l1 ⊔ l2) is-deflationary-prop-hom-Poset = is-deflationary-prop-hom-Preorder (preorder-Poset P) f is-deflationary-hom-Poset : UU (l1 ⊔ l2) is-deflationary-hom-Poset = is-deflationary-hom-Preorder (preorder-Poset P) f is-prop-is-deflationary-hom-Poset : is-prop is-deflationary-hom-Poset is-prop-is-deflationary-hom-Poset = is-prop-is-deflationary-hom-Preorder (preorder-Poset P) f
The type of deflationary morphisms on a poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where deflationary-hom-Poset : UU (l1 ⊔ l2) deflationary-hom-Poset = deflationary-hom-Preorder (preorder-Poset P) module _ {l1 l2 : Level} (P : Poset l1 l2) (f : deflationary-hom-Poset P) where hom-deflationary-hom-Poset : hom-Poset P P hom-deflationary-hom-Poset = hom-deflationary-hom-Preorder (preorder-Poset P) f map-deflationary-hom-Poset : type-Poset P → type-Poset P map-deflationary-hom-Poset = map-deflationary-hom-Preorder (preorder-Poset P) f preserves-order-deflationary-hom-Poset : preserves-order-Poset P P map-deflationary-hom-Poset preserves-order-deflationary-hom-Poset = preserves-order-deflationary-hom-Preorder (preorder-Poset P) f is-deflationary-deflationary-hom-Poset : is-deflationary-map-Poset P map-deflationary-hom-Poset is-deflationary-deflationary-hom-Poset = is-deflationary-deflationary-hom-Preorder (preorder-Poset P) f deflationary-map-deflationary-hom-Poset : deflationary-map-Poset P deflationary-map-deflationary-hom-Poset = deflationary-map-deflationary-hom-Preorder (preorder-Poset P) f
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).