Deflationary maps on a poset

Content created by Egbert Rijke.

Created on 2025-02-09.
Last modified on 2025-02-09.

module order-theory.deflationary-maps-posets where
Imports
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.deflationary-maps-preorders
open import order-theory.order-preserving-maps-posets
open import order-theory.posets

Idea

A map on a poset is said to be a deflationary map if the inequality

holds for any element . In other words, a map on a poset is deflationary precisely when the map on its underlying preorder is deflationary. If is also order preserving we say that is a deflationary morphism.

Definitions

The predicate of being a deflationary map

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : type-Poset P  type-Poset P)
  where

  is-deflationary-prop-map-Poset :
    Prop (l1  l2)
  is-deflationary-prop-map-Poset =
    is-deflationary-prop-map-Preorder (preorder-Poset P) f

  is-deflationary-map-Poset :
    UU (l1  l2)
  is-deflationary-map-Poset =
    is-deflationary-map-Preorder (preorder-Poset P) f

  is-prop-is-deflationary-map-Poset :
    is-prop is-deflationary-map-Poset
  is-prop-is-deflationary-map-Poset =
    is-prop-is-deflationary-map-Preorder (preorder-Poset P) f

The type of deflationary maps on a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  deflationary-map-Poset :
    UU (l1  l2)
  deflationary-map-Poset =
    deflationary-map-Preorder (preorder-Poset P)

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : deflationary-map-Poset P)
  where

  map-deflationary-map-Poset :
    type-Poset P  type-Poset P
  map-deflationary-map-Poset =
    map-deflationary-map-Preorder (preorder-Poset P) f

  is-deflationary-deflationary-map-Poset :
    is-deflationary-map-Poset P map-deflationary-map-Poset
  is-deflationary-deflationary-map-Poset =
    is-deflationary-deflationary-map-Preorder (preorder-Poset P) f

The predicate on order preserving maps of being deflationary

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : hom-Poset P P)
  where

  is-deflationary-prop-hom-Poset : Prop (l1  l2)
  is-deflationary-prop-hom-Poset =
    is-deflationary-prop-hom-Preorder (preorder-Poset P) f

  is-deflationary-hom-Poset : UU (l1  l2)
  is-deflationary-hom-Poset =
    is-deflationary-hom-Preorder (preorder-Poset P) f

  is-prop-is-deflationary-hom-Poset :
    is-prop is-deflationary-hom-Poset
  is-prop-is-deflationary-hom-Poset =
    is-prop-is-deflationary-hom-Preorder (preorder-Poset P) f

The type of deflationary morphisms on a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  deflationary-hom-Poset : UU (l1  l2)
  deflationary-hom-Poset =
    deflationary-hom-Preorder (preorder-Poset P)

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : deflationary-hom-Poset P)
  where

  hom-deflationary-hom-Poset :
    hom-Poset P P
  hom-deflationary-hom-Poset =
    hom-deflationary-hom-Preorder (preorder-Poset P) f

  map-deflationary-hom-Poset :
    type-Poset P  type-Poset P
  map-deflationary-hom-Poset =
    map-deflationary-hom-Preorder (preorder-Poset P) f

  preserves-order-deflationary-hom-Poset :
    preserves-order-Poset P P map-deflationary-hom-Poset
  preserves-order-deflationary-hom-Poset =
    preserves-order-deflationary-hom-Preorder (preorder-Poset P) f

  is-deflationary-deflationary-hom-Poset :
    is-deflationary-map-Poset P map-deflationary-hom-Poset
  is-deflationary-deflationary-hom-Poset =
    is-deflationary-deflationary-hom-Preorder (preorder-Poset P) f

  deflationary-map-deflationary-hom-Poset :
    deflationary-map-Poset P
  deflationary-map-deflationary-hom-Poset =
    deflationary-map-deflationary-hom-Preorder (preorder-Poset P) f

Recent changes