Quotient rings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, Fernando Chu, Victor Blanchi and maybemabeline.
Created on 2022-12-09.
Last modified on 2023-09-26.
module ring-theory.quotient-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels open import ring-theory.homomorphisms-rings open import ring-theory.ideals-rings open import ring-theory.rings
Definitions
The universal property of quotient rings
precomp-quotient-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (I : ideal-Ring l2 R) (S : Ring l3) (T : Ring l4) → (f : hom-Ring R S) ( H : (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R S f x = zero-Ring S) → hom-Ring S T → Σ ( hom-Ring R T) ( λ g → (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R T g x = zero-Ring T) pr1 (precomp-quotient-Ring R I S T f H h) = comp-hom-Ring R S T h f pr2 (precomp-quotient-Ring R I S T f H h) x K = ap (map-hom-Ring S T h) (H x K) ∙ preserves-zero-hom-Ring S T h universal-property-quotient-Ring : {l1 l2 l3 : Level} (l : Level) (R : Ring l1) (I : ideal-Ring l2 R) (S : Ring l3) (f : hom-Ring R S) ( H : (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R S f x = zero-Ring S) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l) universal-property-quotient-Ring l R I S f H = (T : Ring l) → is-equiv (precomp-quotient-Ring R I S T f H)
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-08-28. maybemabeline and Fredrik Bakke. Construct ring congruence from two sided ideal (#708).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-22. Fredrik Bakke, Victor Blanchi, Egbert Rijke and Jonathan Prieto-Cubides. Pre-commit stuff (#627).