Large function categories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-28.
Last modified on 2024-03-11.
module category-theory.large-function-categories where
Imports
open import category-theory.dependent-products-of-large-categories open import category-theory.isomorphisms-in-large-categories open import category-theory.large-categories open import foundation.equivalences open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Given a type I
and a large category
C
, the large function category¶
Cᴵ
consists of I
-indexed families of objects of C
and I
-indexed families
of morphisms between them.
Definition
Large function categories
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : Large-Category α β) where Large-Function-Category : Large-Category (λ l2 → l1 ⊔ α l2) (λ l2 l3 → l1 ⊔ β l2 l3) Large-Function-Category = Π-Large-Category I (λ _ → C) obj-Large-Function-Category : (l2 : Level) → UU (l1 ⊔ α l2) obj-Large-Function-Category = obj-Π-Large-Category I (λ _ → C) hom-set-Large-Function-Category : {l2 l3 : Level} → obj-Large-Function-Category l2 → obj-Large-Function-Category l3 → Set (l1 ⊔ β l2 l3) hom-set-Large-Function-Category = hom-set-Π-Large-Category I (λ _ → C) hom-Large-Function-Category : {l2 l3 : Level} → obj-Large-Function-Category l2 → obj-Large-Function-Category l3 → UU (l1 ⊔ β l2 l3) hom-Large-Function-Category = hom-Π-Large-Category I (λ _ → C) comp-hom-Large-Function-Category : {l2 l3 l4 : Level} {x : obj-Large-Function-Category l2} {y : obj-Large-Function-Category l3} {z : obj-Large-Function-Category l4} → hom-Large-Function-Category y z → hom-Large-Function-Category x y → hom-Large-Function-Category x z comp-hom-Large-Function-Category = comp-hom-Π-Large-Category I (λ _ → C) associative-comp-hom-Large-Function-Category : {l2 l3 l4 l5 : Level} {x : obj-Large-Function-Category l2} {y : obj-Large-Function-Category l3} {z : obj-Large-Function-Category l4} {w : obj-Large-Function-Category l5} → (h : hom-Large-Function-Category z w) (g : hom-Large-Function-Category y z) (f : hom-Large-Function-Category x y) → comp-hom-Large-Function-Category (comp-hom-Large-Function-Category h g) f = comp-hom-Large-Function-Category h (comp-hom-Large-Function-Category g f) associative-comp-hom-Large-Function-Category = associative-comp-hom-Π-Large-Category I (λ _ → C) involutive-eq-associative-comp-hom-Large-Function-Category : {l2 l3 l4 l5 : Level} {x : obj-Large-Function-Category l2} {y : obj-Large-Function-Category l3} {z : obj-Large-Function-Category l4} {w : obj-Large-Function-Category l5} → (h : hom-Large-Function-Category z w) (g : hom-Large-Function-Category y z) (f : hom-Large-Function-Category x y) → comp-hom-Large-Function-Category ( comp-hom-Large-Function-Category h g) ( f) =ⁱ comp-hom-Large-Function-Category ( h) ( comp-hom-Large-Function-Category g f) involutive-eq-associative-comp-hom-Large-Function-Category = involutive-eq-associative-comp-hom-Π-Large-Category I (λ _ → C) id-hom-Large-Function-Category : {l2 : Level} {x : obj-Large-Function-Category l2} → hom-Large-Function-Category x x id-hom-Large-Function-Category = id-hom-Π-Large-Category I (λ _ → C) left-unit-law-comp-hom-Large-Function-Category : {l2 l3 : Level} {x : obj-Large-Function-Category l2} {y : obj-Large-Function-Category l3} (f : hom-Large-Function-Category x y) → comp-hom-Large-Function-Category id-hom-Large-Function-Category f = f left-unit-law-comp-hom-Large-Function-Category = left-unit-law-comp-hom-Π-Large-Category I (λ _ → C) right-unit-law-comp-hom-Large-Function-Category : {l2 l3 : Level} {x : obj-Large-Function-Category l2} {y : obj-Large-Function-Category l3} (f : hom-Large-Function-Category x y) → comp-hom-Large-Function-Category f id-hom-Large-Function-Category = f right-unit-law-comp-hom-Large-Function-Category = right-unit-law-comp-hom-Π-Large-Category I (λ _ → C)
Properties
Isomorphisms in the dependent product category are fiberwise isomorphisms
module _ {l1 l2 l3 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : Large-Category α β) {x : obj-Large-Function-Category I C l2} {y : obj-Large-Function-Category I C l3} where is-fiberwise-iso-is-iso-Large-Function-Category : (f : hom-Large-Function-Category I C x y) → is-iso-Large-Category (Large-Function-Category I C) f → (i : I) → is-iso-Large-Category C (f i) is-fiberwise-iso-is-iso-Large-Function-Category = is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C) fiberwise-iso-iso-Large-Function-Category : iso-Large-Category (Large-Function-Category I C) x y → (i : I) → iso-Large-Category C (x i) (y i) fiberwise-iso-iso-Large-Function-Category = fiberwise-iso-iso-Π-Large-Category I (λ _ → C) is-iso-is-fiberwise-iso-Large-Function-Category : (f : hom-Large-Function-Category I C x y) → ((i : I) → is-iso-Large-Category C (f i)) → is-iso-Large-Category (Large-Function-Category I C) f is-iso-is-fiberwise-iso-Large-Function-Category = is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C) iso-fiberwise-iso-Large-Function-Category : ((i : I) → iso-Large-Category C (x i) (y i)) → iso-Large-Category (Large-Function-Category I C) x y iso-fiberwise-iso-Large-Function-Category = iso-fiberwise-iso-Π-Large-Category I (λ _ → C) is-equiv-is-fiberwise-iso-is-iso-Large-Function-Category : (f : hom-Large-Function-Category I C x y) → is-equiv (is-fiberwise-iso-is-iso-Large-Function-Category f) is-equiv-is-fiberwise-iso-is-iso-Large-Function-Category = is-equiv-is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C) equiv-is-fiberwise-iso-is-iso-Large-Function-Category : (f : hom-Large-Function-Category I C x y) → ( is-iso-Large-Category (Large-Function-Category I C) f) ≃ ( (i : I) → is-iso-Large-Category C (f i)) equiv-is-fiberwise-iso-is-iso-Large-Function-Category = equiv-is-fiberwise-iso-is-iso-Π-Large-Category I (λ _ → C) is-equiv-is-iso-is-fiberwise-iso-Large-Function-Category : (f : hom-Large-Function-Category I C x y) → is-equiv (is-iso-is-fiberwise-iso-Large-Function-Category f) is-equiv-is-iso-is-fiberwise-iso-Large-Function-Category = is-equiv-is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C) equiv-is-iso-is-fiberwise-iso-Large-Function-Category : ( f : hom-Large-Function-Category I C x y) → ( (i : I) → is-iso-Large-Category C (f i)) ≃ ( is-iso-Large-Category (Large-Function-Category I C) f) equiv-is-iso-is-fiberwise-iso-Large-Function-Category = equiv-is-iso-is-fiberwise-iso-Π-Large-Category I (λ _ → C) is-equiv-fiberwise-iso-iso-Large-Function-Category : is-equiv fiberwise-iso-iso-Large-Function-Category is-equiv-fiberwise-iso-iso-Large-Function-Category = is-equiv-fiberwise-iso-iso-Π-Large-Category I (λ _ → C) equiv-fiberwise-iso-iso-Large-Function-Category : ( iso-Large-Category (Large-Function-Category I C) x y) ≃ ( (i : I) → iso-Large-Category C (x i) (y i)) equiv-fiberwise-iso-iso-Large-Function-Category = equiv-fiberwise-iso-iso-Π-Large-Category I (λ _ → C) is-equiv-iso-fiberwise-iso-Large-Function-Category : is-equiv iso-fiberwise-iso-Large-Function-Category is-equiv-iso-fiberwise-iso-Large-Function-Category = is-equiv-iso-fiberwise-iso-Π-Large-Category I (λ _ → C) equiv-iso-fiberwise-iso-Large-Function-Category : ( (i : I) → iso-Large-Category C (x i) (y i)) ≃ ( iso-Large-Category (Large-Function-Category I C) x y) equiv-iso-fiberwise-iso-Large-Function-Category = equiv-iso-fiberwise-iso-Π-Large-Category I (λ _ → C)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-28. Egbert Rijke and Fredrik Bakke. Cyclic types (#800).