Dependent products of metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.dependent-products-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import metric-spaces.extensional-premetric-structures open import metric-spaces.metric-spaces open import metric-spaces.metric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.pseudometric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.short-functions-metric-spaces open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
A family of metric spaces over a type produces
a product metric space¶ on the type of
dependent functions into the carrier types of the family. Two functions f
and
g
are in a d
-neighborhood in the
product structure if this holds for all the evaluations f x
and g x
. I.e
this is the premetric such that
upper bounds on the distance between
f
and g
are bounded below by the supremum of the distances between each
f x
and g x
. The evaluation functions from the product metric space to each
projected metric space are
short maps.
Definitions
Product of metric spaces
module _ {l l1 l2 : Level} (A : UU l) (P : A → Metric-Space l1 l2) where type-Π-Metric-Space : UU (l ⊔ l1) type-Π-Metric-Space = (x : A) → type-Metric-Space (P x) structure-Π-Metric-Space : Premetric (l ⊔ l2) type-Π-Metric-Space structure-Π-Metric-Space d f g = Π-Prop A (λ x → structure-Metric-Space (P x) d (f x) (g x)) is-reflexive-structure-Π-Metric-Space : is-reflexive-Premetric structure-Π-Metric-Space is-reflexive-structure-Π-Metric-Space d f a = is-reflexive-structure-Metric-Space (P a) d (f a) is-symmetric-structure-Π-Metric-Space : is-symmetric-Premetric structure-Π-Metric-Space is-symmetric-structure-Π-Metric-Space d f g H a = is-symmetric-structure-Metric-Space (P a) d (f a) (g a) (H a) is-triangular-structure-Π-Metric-Space : is-triangular-Premetric structure-Π-Metric-Space is-triangular-structure-Π-Metric-Space f g h d₁ d₂ H K a = is-triangular-structure-Metric-Space ( P a) ( f a) ( g a) ( h a) ( d₁) ( d₂) ( H a) ( K a) is-local-structure-Π-Metric-Space : is-local-Premetric structure-Π-Metric-Space is-local-structure-Π-Metric-Space = is-local-is-tight-Premetric ( structure-Π-Metric-Space) ( λ f g H → eq-htpy ( λ a → is-tight-structure-Metric-Space ( P a) ( f a) ( g a) ( λ d → H d a))) is-pseudometric-structure-Π-Metric-Space : is-pseudometric-Premetric structure-Π-Metric-Space is-pseudometric-structure-Π-Metric-Space = is-reflexive-structure-Π-Metric-Space , is-symmetric-structure-Π-Metric-Space , is-triangular-structure-Π-Metric-Space is-metric-structure-Π-Metric-Space : is-metric-Premetric structure-Π-Metric-Space is-metric-structure-Π-Metric-Space = is-pseudometric-structure-Π-Metric-Space , is-local-structure-Π-Metric-Space Π-Metric-Space : Metric-Space (l ⊔ l1) (l ⊔ l2) pr1 Π-Metric-Space = type-Π-Metric-Space , structure-Π-Metric-Space pr2 Π-Metric-Space = is-metric-structure-Π-Metric-Space
Properties
The evaluation maps on a product metric space are short
module _ {l l1 l2 : Level} (A : UU l) (P : A → Metric-Space l1 l2) (a : A) where is-short-ev-Π-Metric-Space : is-short-function-Metric-Space ( Π-Metric-Space A P) ( P a) ( λ f → f a) is-short-ev-Π-Metric-Space ε x y H = H a
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).