Right ideals of rings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2024-04-20.
module ring-theory.right-ideals-rings where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.subtype-identity-principle open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.universe-levels open import ring-theory.rings open import ring-theory.subsets-rings
Idea
A right ideal in a ring R
is a right submodule of
R
.
Definitions
Right ideals
module _ {l1 : Level} (R : Ring l1) where is-right-ideal-subset-Ring : {l2 : Level} → subset-Ring l2 R → UU (l1 ⊔ l2) is-right-ideal-subset-Ring P = is-additive-subgroup-subset-Ring R P × is-closed-under-right-multiplication-subset-Ring R P is-prop-is-right-ideal-subset-Ring : {l2 : Level} (S : subset-Ring l2 R) → is-prop (is-right-ideal-subset-Ring S) is-prop-is-right-ideal-subset-Ring S = is-prop-product ( is-prop-is-additive-subgroup-subset-Ring R S) ( is-prop-is-closed-under-right-multiplication-subset-Ring R S) right-ideal-Ring : (l : Level) {l1 : Level} (R : Ring l1) → UU (lsuc l ⊔ l1) right-ideal-Ring l R = Σ (subset-Ring l R) (is-right-ideal-subset-Ring R) module _ {l1 l2 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) where subset-right-ideal-Ring : subset-Ring l2 R subset-right-ideal-Ring = pr1 I is-in-right-ideal-Ring : type-Ring R → UU l2 is-in-right-ideal-Ring x = type-Prop (subset-right-ideal-Ring x) type-right-ideal-Ring : UU (l1 ⊔ l2) type-right-ideal-Ring = type-subset-Ring R subset-right-ideal-Ring inclusion-right-ideal-Ring : type-right-ideal-Ring → type-Ring R inclusion-right-ideal-Ring = inclusion-subset-Ring R subset-right-ideal-Ring ap-inclusion-right-ideal-Ring : (x y : type-right-ideal-Ring) → x = y → inclusion-right-ideal-Ring x = inclusion-right-ideal-Ring y ap-inclusion-right-ideal-Ring = ap-inclusion-subset-Ring R subset-right-ideal-Ring is-in-subset-inclusion-right-ideal-Ring : (x : type-right-ideal-Ring) → is-in-right-ideal-Ring (inclusion-right-ideal-Ring x) is-in-subset-inclusion-right-ideal-Ring = is-in-subset-inclusion-subset-Ring R subset-right-ideal-Ring is-closed-under-eq-right-ideal-Ring : {x y : type-Ring R} → is-in-right-ideal-Ring x → (x = y) → is-in-right-ideal-Ring y is-closed-under-eq-right-ideal-Ring = is-closed-under-eq-subset-Ring R subset-right-ideal-Ring is-closed-under-eq-right-ideal-Ring' : {x y : type-Ring R} → is-in-right-ideal-Ring y → (x = y) → is-in-right-ideal-Ring x is-closed-under-eq-right-ideal-Ring' = is-closed-under-eq-subset-Ring' R subset-right-ideal-Ring is-right-ideal-subset-right-ideal-Ring : is-right-ideal-subset-Ring R subset-right-ideal-Ring is-right-ideal-subset-right-ideal-Ring = pr2 I is-additive-subgroup-subset-right-ideal-Ring : is-additive-subgroup-subset-Ring R subset-right-ideal-Ring is-additive-subgroup-subset-right-ideal-Ring = pr1 is-right-ideal-subset-right-ideal-Ring contains-zero-right-ideal-Ring : is-in-right-ideal-Ring (zero-Ring R) contains-zero-right-ideal-Ring = pr1 is-additive-subgroup-subset-right-ideal-Ring is-closed-under-addition-right-ideal-Ring : is-closed-under-addition-subset-Ring R subset-right-ideal-Ring is-closed-under-addition-right-ideal-Ring = pr1 (pr2 is-additive-subgroup-subset-right-ideal-Ring) is-closed-under-negatives-right-ideal-Ring : is-closed-under-negatives-subset-Ring R subset-right-ideal-Ring is-closed-under-negatives-right-ideal-Ring = pr2 (pr2 is-additive-subgroup-subset-right-ideal-Ring) is-closed-under-right-multiplication-right-ideal-Ring : is-closed-under-right-multiplication-subset-Ring R subset-right-ideal-Ring is-closed-under-right-multiplication-right-ideal-Ring = pr2 is-right-ideal-subset-right-ideal-Ring is-right-ideal-right-ideal-Ring : is-right-ideal-subset-Ring R subset-right-ideal-Ring is-right-ideal-right-ideal-Ring = pr2 I
Properties
Characterizing equality of right ideals in rings
module _ {l1 l2 l3 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) where has-same-elements-right-ideal-Ring : (J : right-ideal-Ring l3 R) → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-right-ideal-Ring J = has-same-elements-subtype ( subset-right-ideal-Ring R I) ( subset-right-ideal-Ring R J) module _ {l1 l2 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) where refl-has-same-elements-right-ideal-Ring : has-same-elements-right-ideal-Ring R I I refl-has-same-elements-right-ideal-Ring = refl-has-same-elements-subtype (subset-right-ideal-Ring R I) is-torsorial-has-same-elements-right-ideal-Ring : is-torsorial (has-same-elements-right-ideal-Ring R I) is-torsorial-has-same-elements-right-ideal-Ring = is-torsorial-Eq-subtype ( is-torsorial-has-same-elements-subtype (subset-right-ideal-Ring R I)) ( is-prop-is-right-ideal-subset-Ring R) ( subset-right-ideal-Ring R I) ( refl-has-same-elements-right-ideal-Ring) ( is-right-ideal-right-ideal-Ring R I) has-same-elements-eq-right-ideal-Ring : (J : right-ideal-Ring l2 R) → (I = J) → has-same-elements-right-ideal-Ring R I J has-same-elements-eq-right-ideal-Ring .I refl = refl-has-same-elements-right-ideal-Ring is-equiv-has-same-elements-eq-right-ideal-Ring : (J : right-ideal-Ring l2 R) → is-equiv (has-same-elements-eq-right-ideal-Ring J) is-equiv-has-same-elements-eq-right-ideal-Ring = fundamental-theorem-id is-torsorial-has-same-elements-right-ideal-Ring has-same-elements-eq-right-ideal-Ring extensionality-right-ideal-Ring : (J : right-ideal-Ring l2 R) → (I = J) ≃ has-same-elements-right-ideal-Ring R I J pr1 (extensionality-right-ideal-Ring J) = has-same-elements-eq-right-ideal-Ring J pr2 (extensionality-right-ideal-Ring J) = is-equiv-has-same-elements-eq-right-ideal-Ring J eq-has-same-elements-right-ideal-Ring : (J : right-ideal-Ring l2 R) → has-same-elements-right-ideal-Ring R I J → I = J eq-has-same-elements-right-ideal-Ring J = map-inv-equiv (extensionality-right-ideal-Ring J)
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871).