Order preserving maps between large preorders
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-05-10.
Last modified on 2024-03-11.
module order-theory.order-preserving-maps-large-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.homotopies open import order-theory.large-preorders open import order-theory.similarity-of-elements-large-preorders
Idea
An order preserving map between
large preorders P
and Q
consists of a map
f : type-Large-Preorder P l1 → type-Large-Preorder Q (γ l1)
for each universe level l1
, such that x ≤ y
implies f x ≤ f y
for any two elements x y : P
. The function
γ : Level → Level
that specifies the universe level of f x
in terms of the
universe level of x
is called the universe level reindexing function of
the order preserving map f
.
Definitions
The predicate that a map between large preorders is order preserving
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) where preserves-order-map-Large-Preorder : ({l : Level} → type-Large-Preorder P l → type-Large-Preorder Q (γ l)) → UUω preserves-order-map-Large-Preorder f = {l1 l2 : Level} (x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) → leq-Large-Preorder P x y → leq-Large-Preorder Q (f x) (f y)
The type of order preserving maps between large preorders
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} (γ : Level → Level) (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) where record hom-Large-Preorder : UUω where constructor make-hom-Large-Preorder field map-hom-Large-Preorder : {l1 : Level} → type-Large-Preorder P l1 → type-Large-Preorder Q (γ l1) preserves-order-hom-Large-Preorder : preserves-order-map-Large-Preorder P Q map-hom-Large-Preorder open hom-Large-Preorder public
The identity order preserving map on a large preorder
module _ {αP : Level → Level} {βP : Level → Level → Level} (P : Large-Preorder αP βP) where id-hom-Large-Preorder : hom-Large-Preorder (λ l → l) P P map-hom-Large-Preorder id-hom-Large-Preorder = id preserves-order-hom-Large-Preorder id-hom-Large-Preorder x y = id
Composition of order preserving maps between large preorders
module _ {αP αQ αR γg γf : Level → Level} {βP βQ βR : Level → Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) (R : Large-Preorder αR βR) (g : hom-Large-Preorder γg Q R) (f : hom-Large-Preorder γf P Q) where map-comp-hom-Large-Preorder : {l1 : Level} → type-Large-Preorder P l1 → type-Large-Preorder R (γg (γf l1)) map-comp-hom-Large-Preorder = map-hom-Large-Preorder g ∘ map-hom-Large-Preorder f preserves-order-comp-hom-Large-Preorder : preserves-order-map-Large-Preorder P R map-comp-hom-Large-Preorder preserves-order-comp-hom-Large-Preorder x y = preserves-order-hom-Large-Preorder g _ _ ∘ preserves-order-hom-Large-Preorder f _ _ comp-hom-Large-Preorder : hom-Large-Preorder (λ l → γg (γf l)) P R map-hom-Large-Preorder comp-hom-Large-Preorder = map-comp-hom-Large-Preorder preserves-order-hom-Large-Preorder comp-hom-Large-Preorder = preserves-order-comp-hom-Large-Preorder
Homotopies of order preserving maps between large preorders
Given two order preserving maps f g : hom-Large-Preorder γ P Q
with the same
universe level reindexing γ
, a homotopy of order preserving maps from f
to g
is a pointwise identification of the underlying maps of f
and g
.
module _ {αP αQ γ : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) where htpy-hom-Large-Preorder : (f g : hom-Large-Preorder γ P Q) → UUω htpy-hom-Large-Preorder f g = {l : Level} → map-hom-Large-Preorder f {l} ~ map-hom-Large-Preorder g {l} refl-htpy-hom-Large-Preorder : (f : hom-Large-Preorder γ P Q) → htpy-hom-Large-Preorder f f refl-htpy-hom-Large-Preorder f = refl-htpy
Properties
Composition of order preserving maps is associative
module _ {αP αQ αR αS γh γg γf : Level → Level} {βP βQ βR βS : Level → Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) (R : Large-Preorder αR βR) (S : Large-Preorder αS βS) (h : hom-Large-Preorder γh R S) (g : hom-Large-Preorder γg Q R) (f : hom-Large-Preorder γf P Q) where associative-comp-hom-Large-Preorder : htpy-hom-Large-Preorder P S ( comp-hom-Large-Preorder P Q S (comp-hom-Large-Preorder Q R S h g) f) ( comp-hom-Large-Preorder P R S h (comp-hom-Large-Preorder P Q R g f)) associative-comp-hom-Large-Preorder = refl-htpy
Composition of order preserving maps satisfies left and right unit laws
module _ {αP αQ γf : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) (f : hom-Large-Preorder γf P Q) where left-unit-law-comp-hom-Large-Preorder : htpy-hom-Large-Preorder P Q ( comp-hom-Large-Preorder P Q Q (id-hom-Large-Preorder Q) f) ( f) left-unit-law-comp-hom-Large-Preorder = refl-htpy right-unit-law-comp-hom-Large-Preorder : htpy-hom-Large-Preorder P Q ( comp-hom-Large-Preorder P P Q f (id-hom-Large-Preorder P)) ( f) right-unit-law-comp-hom-Large-Preorder = refl-htpy
Order preserving maps preserve similarity of elements
module _ {αP αQ γf : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Preorder αP βP) (Q : Large-Preorder αQ βQ) (f : hom-Large-Preorder γf P Q) where preserves-sim-hom-Large-Preorder : {l1 l2 : Level} (x : type-Large-Preorder P l1) (y : type-Large-Preorder P l2) → sim-Large-Preorder P x y → sim-Large-Preorder Q ( map-hom-Large-Preorder f x) ( map-hom-Large-Preorder f y) pr1 (preserves-sim-hom-Large-Preorder x y (s , t)) = preserves-order-hom-Large-Preorder f x y s pr2 (preserves-sim-hom-Large-Preorder x y (s , t)) = preserves-order-hom-Large-Preorder f y x t
See also
- Order preserving maps between large posets
- Similarity of order preserving maps between large preorders
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).