Orthogonality relative to a bilinear form in a real vector space
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-12-23.
module linear-algebra.orthogonality-bilinear-forms-real-vector-spaces where
Imports
open import foundation.binary-relations open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import linear-algebra.bilinear-forms-real-vector-spaces open import linear-algebra.real-vector-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.zero-real-numbers
Idea
Two elements u and v of a
real vector space V are
orthogonal¶
relative to a
bilinear form
B : V → V → ℝ if B u v = 0.
Definition
module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (B : bilinear-form-ℝ-Vector-Space V) where is-orthogonal-prop-bilinear-form-ℝ-Vector-Space : Relation-Prop l1 (type-ℝ-Vector-Space V) is-orthogonal-prop-bilinear-form-ℝ-Vector-Space v w = is-zero-prop-ℝ (map-bilinear-form-ℝ-Vector-Space V B v w) is-orthogonal-bilinear-form-ℝ-Vector-Space : Relation l1 (type-ℝ-Vector-Space V) is-orthogonal-bilinear-form-ℝ-Vector-Space = type-Relation-Prop is-orthogonal-prop-bilinear-form-ℝ-Vector-Space
Recent changes
- 2025-12-23. Louis Wasserman. Standardize an “is zero” predicate on the real numbers (#1752).
- 2025-11-26. Louis Wasserman. Inner product spaces (#1705).