The large additive group of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-11.
Last modified on 2025-11-11.
module complex-numbers.large-additive-group-of-complex-numbers where
Imports
open import complex-numbers.addition-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.raising-universe-levels-complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.large-abelian-groups open import group-theory.large-commutative-monoids open import group-theory.large-groups open import group-theory.large-monoids open import group-theory.large-semigroups
Idea
The type of complex numbers equipped with addition is a large abelian group.
Definition
large-semigroup-add-ℂ : Large-Semigroup lsuc large-semigroup-add-ℂ = make-Large-Semigroup ( ℂ-Set) ( add-ℂ) ( associative-add-ℂ) large-monoid-add-ℂ : Large-Monoid lsuc (_⊔_) large-monoid-add-ℂ = make-Large-Monoid ( large-semigroup-add-ℂ) ( large-similarity-relation-ℂ) ( raise-ℂ) ( sim-raise-ℂ) ( λ _ _ z~z' _ _ → preserves-sim-add-ℂ z~z') ( zero-ℂ) ( left-unit-law-add-ℂ) ( right-unit-law-add-ℂ) large-commutative-monoid-add-ℂ : Large-Commutative-Monoid lsuc (_⊔_) large-commutative-monoid-add-ℂ = make-Large-Commutative-Monoid ( large-monoid-add-ℂ) ( commutative-add-ℂ) large-group-add-ℂ : Large-Group lsuc (_⊔_) large-group-add-ℂ = make-Large-Group ( large-monoid-add-ℂ) ( neg-ℂ) ( λ _ _ → preserves-sim-neg-ℂ) ( λ x → eq-sim-ℂ ( transitive-sim-ℂ ( neg-ℂ x +ℂ x) ( zero-ℂ) ( raise-ℂ _ zero-ℂ) ( sim-raise-ℂ _ zero-ℂ) ( left-inverse-law-add-ℂ x))) ( λ x → eq-sim-ℂ ( transitive-sim-ℂ ( x +ℂ neg-ℂ x) ( zero-ℂ) ( raise-ℂ _ zero-ℂ) ( sim-raise-ℂ _ zero-ℂ) ( right-inverse-law-add-ℂ x))) large-ab-add-ℂ : Large-Ab lsuc (_⊔_) large-ab-add-ℂ = make-Large-Ab ( large-group-add-ℂ) ( commutative-add-ℂ)
Properties
The abelian group of complex numbers at a universe level
ab-add-ℂ : (l : Level) → Ab (lsuc l) ab-add-ℂ = ab-Large-Ab large-ab-add-ℂ
Recent changes
- 2025-11-11. Louis Wasserman. The large ring of complex numbers (#1688).