Invertible maps
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-11.
Last modified on 2024-04-17.
module foundation-core.invertible-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.cartesian-product-types open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.sections
Idea
An inverse¶ for a
map f : A → B
is a map g : B → A
equipped with
homotopies f ∘ g ~ id
and g ∘ f ~ id
. Such
data, however, is structure on the map f
, and not
generally a property.
Definition
The predicate that a map g
is an inverse of a map f
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-inverse : (A → B) → (B → A) → UU (l1 ⊔ l2) is-inverse f g = ((f ∘ g) ~ id) × ((g ∘ f) ~ id) is-section-is-inverse : {f : A → B} {g : B → A} → is-inverse f g → f ∘ g ~ id is-section-is-inverse = pr1 is-retraction-is-inverse : {f : A → B} {g : B → A} → is-inverse f g → g ∘ f ~ id is-retraction-is-inverse = pr2
The predicate that a map f
is invertible
is-invertible : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-invertible {A = A} {B} f = Σ (B → A) (is-inverse f) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (g : is-invertible f) where map-inv-is-invertible : B → A map-inv-is-invertible = pr1 g is-inverse-map-inv-is-invertible : is-inverse f map-inv-is-invertible is-inverse-map-inv-is-invertible = pr2 g is-section-map-inv-is-invertible : f ∘ map-inv-is-invertible ~ id is-section-map-inv-is-invertible = pr1 is-inverse-map-inv-is-invertible is-retraction-map-inv-is-invertible : map-inv-is-invertible ∘ f ~ id is-retraction-map-inv-is-invertible = pr2 is-inverse-map-inv-is-invertible section-is-invertible : section f pr1 section-is-invertible = map-inv-is-invertible pr2 section-is-invertible = is-section-map-inv-is-invertible retraction-is-invertible : retraction f pr1 retraction-is-invertible = map-inv-is-invertible pr2 retraction-is-invertible = is-retraction-map-inv-is-invertible
The type of invertible maps
invertible-map : {l1 l2 : Level} (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2) invertible-map A B = Σ (A → B) (is-invertible) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where map-invertible-map : invertible-map A B → A → B map-invertible-map = pr1 is-invertible-map-invertible-map : (f : invertible-map A B) → is-invertible (map-invertible-map f) is-invertible-map-invertible-map = pr2 map-inv-invertible-map : invertible-map A B → B → A map-inv-invertible-map = map-inv-is-invertible ∘ is-invertible-map-invertible-map is-retraction-map-inv-invertible-map : (f : invertible-map A B) → map-inv-invertible-map f ∘ map-invertible-map f ~ id is-retraction-map-inv-invertible-map = is-retraction-map-inv-is-invertible ∘ is-invertible-map-invertible-map is-section-map-inv-invertible-map : (f : invertible-map A B) → map-invertible-map f ∘ map-inv-invertible-map f ~ id is-section-map-inv-invertible-map = is-section-map-inv-is-invertible ∘ is-invertible-map-invertible-map
Properties
The identity invertible map
module _ {l1 : Level} {A : UU l1} where is-inverse-id : is-inverse id (id {A = A}) pr1 is-inverse-id = refl-htpy pr2 is-inverse-id = refl-htpy is-invertible-id : is-invertible (id {A = A}) pr1 is-invertible-id = id pr2 is-invertible-id = is-inverse-id id-invertible-map : invertible-map A A pr1 id-invertible-map = id pr2 id-invertible-map = is-invertible-id
The inverse of an invertible map
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-inverse-inv-is-inverse : {f : A → B} {g : B → A} → is-inverse f g → is-inverse g f pr1 (is-inverse-inv-is-inverse {f} {g} H) = is-retraction-map-inv-is-invertible (g , H) pr2 (is-inverse-inv-is-inverse {f} {g} H) = is-section-map-inv-is-invertible (g , H) is-invertible-map-inv-is-invertible : {f : A → B} (g : is-invertible f) → is-invertible (map-inv-is-invertible g) pr1 (is-invertible-map-inv-is-invertible {f} g) = f pr2 (is-invertible-map-inv-is-invertible {f} g) = is-inverse-inv-is-inverse {f} (is-inverse-map-inv-is-invertible g) is-invertible-map-inv-invertible-map : (f : invertible-map A B) → is-invertible (map-inv-invertible-map f) is-invertible-map-inv-invertible-map f = is-invertible-map-inv-is-invertible (is-invertible-map-invertible-map f) inv-invertible-map : invertible-map A B → invertible-map B A pr1 (inv-invertible-map f) = map-inv-invertible-map f pr2 (inv-invertible-map f) = is-invertible-map-inv-invertible-map f
The inversion operation on invertible maps is a strict involution
The inversion operation on invertible maps is a strict involution, where, by
strict involution, we mean that inv-invertible-map (inv-invertible-map f) ≐ f
syntactically. This can be observed by the fact that the type-checker accepts
refl
as proof of this equation.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-involution-inv-invertible-map : {f : invertible-map A B} → inv-invertible-map (inv-invertible-map f) = f is-involution-inv-invertible-map = refl
Composition of invertible maps
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) (G : is-invertible g) (F : is-invertible f) where map-inv-is-invertible-comp : C → A map-inv-is-invertible-comp = map-inv-is-invertible F ∘ map-inv-is-invertible G is-section-map-inv-is-invertible-comp : is-section (g ∘ f) map-inv-is-invertible-comp is-section-map-inv-is-invertible-comp = is-section-map-section-comp g f ( section-is-invertible F) ( section-is-invertible G) is-retraction-map-inv-is-invertible-comp : is-retraction (g ∘ f) map-inv-is-invertible-comp is-retraction-map-inv-is-invertible-comp = is-retraction-map-retraction-comp g f ( retraction-is-invertible G) ( retraction-is-invertible F) is-invertible-comp : is-invertible (g ∘ f) is-invertible-comp = ( map-inv-is-invertible-comp , is-section-map-inv-is-invertible-comp , is-retraction-map-inv-is-invertible-comp) module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where is-invertible-map-comp-invertible-map : (g : invertible-map B C) (f : invertible-map A B) → is-invertible (map-invertible-map g ∘ map-invertible-map f) is-invertible-map-comp-invertible-map g f = is-invertible-comp ( map-invertible-map g) ( map-invertible-map f) ( is-invertible-map-invertible-map g) ( is-invertible-map-invertible-map f) comp-invertible-map : invertible-map B C → invertible-map A B → invertible-map A C pr1 (comp-invertible-map g f) = map-invertible-map g ∘ map-invertible-map f pr2 (comp-invertible-map g f) = is-invertible-map-comp-invertible-map g f
Invertible maps are closed under homotopies
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-section-map-inv-is-invertible-htpy : {f f' : A → B} (H : f' ~ f) (F : is-invertible f) → is-section f' (map-inv-is-invertible F) is-section-map-inv-is-invertible-htpy H (g , S , R) = H ·r g ∙h S is-retraction-map-inv-is-invertible-htpy : {f f' : A → B} (H : f' ~ f) (F : is-invertible f) → is-retraction f' (map-inv-is-invertible F) is-retraction-map-inv-is-invertible-htpy H (g , S , R) = g ·l H ∙h R is-invertible-htpy : {f f' : A → B} → f' ~ f → is-invertible f → is-invertible f' is-invertible-htpy H F = ( map-inv-is-invertible F , is-section-map-inv-is-invertible-htpy H F , is-retraction-map-inv-is-invertible-htpy H F) is-invertible-inv-htpy : {f f' : A → B} → f ~ f' → is-invertible f → is-invertible f' is-invertible-inv-htpy H = is-invertible-htpy (inv-htpy H) htpy-map-inv-is-invertible : {f g : A → B} (H : f ~ g) (F : is-invertible f) (G : is-invertible g) → map-inv-is-invertible F ~ map-inv-is-invertible G htpy-map-inv-is-invertible H F G = ( ( inv-htpy (is-retraction-map-inv-is-invertible G)) ·r ( map-inv-is-invertible F)) ∙h ( ( map-inv-is-invertible G) ·l ( ( inv-htpy H ·r map-inv-is-invertible F) ∙h ( is-section-map-inv-is-invertible F)))
Any section of an invertible map is homotopic to its inverse
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : invertible-map A B) where htpy-map-inv-invertible-map-section : (f : section (map-invertible-map e)) → map-inv-invertible-map e ~ map-section (map-invertible-map e) f htpy-map-inv-invertible-map-section (f , H) = ( map-inv-invertible-map e ·l inv-htpy H) ∙h ( is-retraction-map-inv-invertible-map e ·r f)
Any retraction of an invertible map is homotopic to its inverse
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : invertible-map A B) where htpy-map-inv-invertible-map-retraction : (f : retraction (map-invertible-map e)) → map-inv-invertible-map e ~ map-retraction (map-invertible-map e) f htpy-map-inv-invertible-map-retraction (f , H) = ( inv-htpy H ·r map-inv-invertible-map e) ∙h ( f ·l is-section-map-inv-invertible-map e)
Invertible maps are injective
The construction of the converse map of the
action on identifications
is a rerun of the proof that maps with
retractions are
injective (is-injective-retraction
). We
repeat the proof to avoid cyclic dependencies.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (H : is-invertible f) where is-injective-is-invertible : {x y : A} → f x = f y → x = y is-injective-is-invertible = is-injective-retraction f (retraction-is-invertible H)
See also
- For the coherent notion of invertible maps see
foundation.coherently-invertible-maps
. - For the notion of biinvertible maps see
foundation.equivalences
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
. - For the notion of path-split maps see
foundation.path-split-maps
.
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-03-20. Fredrik Bakke. Janitorial work on equivalences and embeddings (#1085).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).