Equivalences of cocones under sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.equivalences-cocones-under-equivalences-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-prisms-of-maps open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.equivalences-sequential-diagrams open import synthetic-homotopy-theory.morphisms-cocones-under-morphisms-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
Consider two
sequential diagrams (A, a)
and (B, b)
, equipped with
cocones
c : A → X
and c' : B → Y
, respectively, and an
equivalence of sequential diagrams
e : A ≃ B
. Then an
equivalence of cocones¶
under e
is a triple (u, H, K)
, with u : X ≃ Y
a map of vertices of the
coforks, H
a family of homotopies witnessing
that the square
iₙ
Aₙ -------> X
| |
hₙ | ≃ ≃ | u
| |
∨ ∨
Bₙ -------> Y
i'ₙ
commutes for every n
, and K
a family of coherence data filling the insides of the resulting
prism boundaries
Aₙ₊₁
aₙ ∧ | \ iₙ₊₁
/ | \
/ | ∨
Aₙ -----------> X
| iₙ | |
| | hₙ₊₁ |
hₙ | ∨ | u
| Bₙ₊₁ |
| bₙ ∧ \i'ₙ₊₁|
| / \ |
∨ / ∨ ∨
Bₙ -----------> Y
i'ₙ
for every n
.
Definition
Equivalences of cocones under equivalences of sequential diagrams
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) {B : sequential-diagram l3} {Y : UU l4} (c' : cocone-sequential-diagram B Y) (e : equiv-sequential-diagram A B) where coherence-map-cocone-equiv-cocone-equiv-sequential-diagram : (X ≃ Y) → UU (l1 ⊔ l4) coherence-map-cocone-equiv-cocone-equiv-sequential-diagram u = (n : ℕ) → coherence-square-maps ( map-cocone-sequential-diagram c n) ( map-equiv-sequential-diagram B e n) ( map-equiv u) ( map-cocone-sequential-diagram c' n) coherence-equiv-cocone-equiv-sequential-diagram : (u : X ≃ Y) → coherence-map-cocone-equiv-cocone-equiv-sequential-diagram u → UU (l1 ⊔ l4) coherence-equiv-cocone-equiv-sequential-diagram u H = (n : ℕ) → vertical-coherence-prism-maps ( map-cocone-sequential-diagram c n) ( map-cocone-sequential-diagram c (succ-ℕ n)) ( map-sequential-diagram A n) ( map-cocone-sequential-diagram c' n) ( map-cocone-sequential-diagram c' (succ-ℕ n)) ( map-sequential-diagram B n) ( map-equiv-sequential-diagram B e n) ( map-equiv-sequential-diagram B e (succ-ℕ n)) ( map-equiv u) ( coherence-cocone-sequential-diagram c n) ( H n) ( H (succ-ℕ n)) ( naturality-equiv-sequential-diagram B e n) ( coherence-cocone-sequential-diagram c' n) equiv-cocone-equiv-sequential-diagram : UU (l1 ⊔ l2 ⊔ l4) equiv-cocone-equiv-sequential-diagram = Σ ( X ≃ Y) ( λ u → Σ ( coherence-map-cocone-equiv-cocone-equiv-sequential-diagram u) ( coherence-equiv-cocone-equiv-sequential-diagram u)) module _ (e' : equiv-cocone-equiv-sequential-diagram) where equiv-equiv-cocone-equiv-sequential-diagram : X ≃ Y equiv-equiv-cocone-equiv-sequential-diagram = pr1 e' map-equiv-cocone-equiv-sequential-diagram : X → Y map-equiv-cocone-equiv-sequential-diagram = map-equiv equiv-equiv-cocone-equiv-sequential-diagram is-equiv-map-equiv-cocone-equiv-sequential-diagram : is-equiv map-equiv-cocone-equiv-sequential-diagram is-equiv-map-equiv-cocone-equiv-sequential-diagram = is-equiv-map-equiv equiv-equiv-cocone-equiv-sequential-diagram coh-map-cocone-equiv-cocone-equiv-sequential-diagram : coherence-map-cocone-equiv-cocone-equiv-sequential-diagram ( equiv-equiv-cocone-equiv-sequential-diagram) coh-map-cocone-equiv-cocone-equiv-sequential-diagram = pr1 (pr2 e') coh-equiv-cocone-equiv-sequential-diagram : coherence-equiv-cocone-equiv-sequential-diagram ( equiv-equiv-cocone-equiv-sequential-diagram) ( coh-map-cocone-equiv-cocone-equiv-sequential-diagram) coh-equiv-cocone-equiv-sequential-diagram = pr2 (pr2 e') hom-equiv-cocone-equiv-sequential-diagram : hom-cocone-hom-sequential-diagram c c' ( hom-equiv-sequential-diagram B e) pr1 hom-equiv-cocone-equiv-sequential-diagram = map-equiv-cocone-equiv-sequential-diagram pr1 (pr2 hom-equiv-cocone-equiv-sequential-diagram) = coh-map-cocone-equiv-cocone-equiv-sequential-diagram pr2 (pr2 hom-equiv-cocone-equiv-sequential-diagram) = coh-equiv-cocone-equiv-sequential-diagram
The predicate on morphisms of cocones under equivalences of sequential diagrams of being an equivalence
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) {B : sequential-diagram l3} {Y : UU l4} (c' : cocone-sequential-diagram B Y) (e : equiv-sequential-diagram A B) where is-equiv-hom-cocone-equiv-sequential-diagram : hom-cocone-hom-sequential-diagram c c' (hom-equiv-sequential-diagram B e) → UU (l2 ⊔ l4) is-equiv-hom-cocone-equiv-sequential-diagram h = is-equiv (map-hom-cocone-hom-sequential-diagram c c' h) is-equiv-hom-equiv-cocone-equiv-sequential-diagram : (e' : equiv-cocone-equiv-sequential-diagram c c' e) → is-equiv-hom-cocone-equiv-sequential-diagram ( hom-equiv-cocone-equiv-sequential-diagram c c' e e') is-equiv-hom-equiv-cocone-equiv-sequential-diagram e' = is-equiv-map-equiv-cocone-equiv-sequential-diagram c c' e e'
Properties
Morphisms of cocones under equivalences of arrows which are equivalences are equivalences of cocones
To construct an equivalence of cocones under an equivalence e
of sequential
diagrams, it suffices to construct a morphism of cocones under the underlying
morphism of sequential diagrams of e
, and show that the map X → Y
is an
equivalence.
module _ {l1 l2 l3 l4 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) {B : sequential-diagram l3} {Y : UU l4} (c' : cocone-sequential-diagram B Y) (e : equiv-sequential-diagram A B) where equiv-hom-cocone-equiv-sequential-diagram : (h : hom-cocone-hom-sequential-diagram c c' ( hom-equiv-sequential-diagram B e)) → is-equiv-hom-cocone-equiv-sequential-diagram c c' e h → equiv-cocone-equiv-sequential-diagram c c' e pr1 (equiv-hom-cocone-equiv-sequential-diagram h is-equiv-map-cocone) = (map-hom-cocone-hom-sequential-diagram c c' h , is-equiv-map-cocone) pr1 (pr2 (equiv-hom-cocone-equiv-sequential-diagram h _)) = coh-map-cocone-hom-cocone-hom-sequential-diagram c c' h pr2 (pr2 (equiv-hom-cocone-equiv-sequential-diagram h _)) = coh-hom-cocone-hom-sequential-diagram c c' h
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).