Series in metric abelian groups
Content created by Louis Wasserman.
Created on 2025-09-03.
Last modified on 2025-09-03.
module analysis.series-metric-abelian-groups where
Imports
open import analysis.metric-abelian-groups open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.sums-of-finite-sequences-of-elements-abelian-groups open import lists.sequences open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
A
series¶
in a metric abelian group G
is a sum over
a countably infinite sequence of elements of G
.
Definition
Series are defined with a record to make them intensionally distinct from the sequence of their terms.
record series-Metric-Ab {l1 l2 : Level} (G : Metric-Ab l1 l2) : UU l1 where constructor series-terms-Metric-Ab field term-series-Metric-Ab : sequence (type-Metric-Ab G) open series-Metric-Ab public
Properties
Equality of series
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where equiv-series-sequence-Metric-Ab : series-Metric-Ab G ≃ sequence (type-Metric-Ab G) equiv-series-sequence-Metric-Ab = ( term-series-Metric-Ab , is-equiv-is-invertible series-terms-Metric-Ab (λ x → refl) (λ x → refl)) eq-series-Metric-Ab : {f g : series-Metric-Ab G} → term-series-Metric-Ab f = term-series-Metric-Ab g → f = g eq-series-Metric-Ab = ap series-terms-Metric-Ab eq-htpy-term-series-Metric-Ab : {f g : series-Metric-Ab G} → term-series-Metric-Ab f ~ term-series-Metric-Ab g → f = g eq-htpy-term-series-Metric-Ab f~g = eq-series-Metric-Ab (eq-htpy f~g)
Partial sums of a series
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where partial-sum-series-Metric-Ab : series-Metric-Ab G → ℕ → type-Metric-Ab G partial-sum-series-Metric-Ab (series-terms-Metric-Ab f) n = sum-fin-sequence-type-Ab (ab-Metric-Ab G) n (λ i → f (nat-Fin n i))
The n
th term of a series is the difference of the succ-ℕ n
th partial sum and the n
th
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where eq-term-diff-partial-sum-series-Metric-Ab : (f : series-Metric-Ab G) (n : ℕ) → add-Metric-Ab G ( partial-sum-series-Metric-Ab G f (succ-ℕ n)) ( neg-Metric-Ab G (partial-sum-series-Metric-Ab G f n)) = term-series-Metric-Ab f n eq-term-diff-partial-sum-series-Metric-Ab (series-terms-Metric-Ab f) n = ap-add-Metric-Ab G ( cons-sum-fin-sequence-type-Ab ( ab-Metric-Ab G) ( n) ( f ∘ nat-Fin (succ-ℕ n)) refl) ( refl) ∙ is-identity-left-conjugation-Ab (ab-Metric-Ab G) _ _
Two series are equal if and only if their partial sums are homotopic
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where htpy-htpy-partial-sum-series-Metric-Ab : {σ τ : series-Metric-Ab G} → (partial-sum-series-Metric-Ab G σ ~ partial-sum-series-Metric-Ab G τ) → term-series-Metric-Ab σ ~ term-series-Metric-Ab τ htpy-htpy-partial-sum-series-Metric-Ab {σ} {τ} psσ~psτ n = inv (eq-term-diff-partial-sum-series-Metric-Ab G σ n) ∙ ap-right-subtraction-Ab (ab-Metric-Ab G) (psσ~psτ (succ-ℕ n)) (psσ~psτ n) ∙ eq-term-diff-partial-sum-series-Metric-Ab G τ n eq-htpy-partial-sum-series-Metric-Ab : {σ τ : series-Metric-Ab G} → (partial-sum-series-Metric-Ab G σ ~ partial-sum-series-Metric-Ab G τ) → σ = τ eq-htpy-partial-sum-series-Metric-Ab psσ~psτ = eq-htpy-term-series-Metric-Ab G ( htpy-htpy-partial-sum-series-Metric-Ab psσ~psτ)
Dropping terms from a series
module _ {l1 l2 : Level} {G : Metric-Ab l1 l2} where drop-series-Metric-Ab : ℕ → series-Metric-Ab G → series-Metric-Ab G drop-series-Metric-Ab n (series-terms-Metric-Ab f) = series-terms-Metric-Ab (f ∘ add-ℕ n)
The partial sums of a series after dropping terms
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) where abstract partial-sum-drop-series-Metric-Ab : (n : ℕ) → (σ : series-Metric-Ab G) → (i : ℕ) → partial-sum-series-Metric-Ab G (drop-series-Metric-Ab n σ) i = diff-Metric-Ab G ( partial-sum-series-Metric-Ab G σ (n +ℕ i)) ( partial-sum-series-Metric-Ab G σ n) partial-sum-drop-series-Metric-Ab n (series-terms-Metric-Ab σ) i = inv ( equational-reasoning diff-Metric-Ab G ( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) ( n +ℕ i)) ( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n) = diff-Metric-Ab G ( add-Metric-Ab G ( sum-fin-sequence-type-Ab (ab-Metric-Ab G) n ( σ ∘ nat-Fin (n +ℕ i) ∘ inl-coproduct-Fin n i)) ( sum-fin-sequence-type-Ab (ab-Metric-Ab G) i ( σ ∘ nat-Fin (n +ℕ i) ∘ inr-coproduct-Fin n i))) ( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n) by ap-diff-Metric-Ab G ( split-sum-fin-sequence-type-Ab ( ab-Metric-Ab G) ( n) ( i) ( σ ∘ nat-Fin (n +ℕ i))) ( refl) = diff-Metric-Ab G ( add-Metric-Ab G ( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n) ( partial-sum-series-Metric-Ab G ( series-terms-Metric-Ab (σ ∘ add-ℕ n)) i)) ( partial-sum-series-Metric-Ab G (series-terms-Metric-Ab σ) n) by ap-diff-Metric-Ab G ( ap-add-Metric-Ab G ( htpy-sum-fin-sequence-type-Ab (ab-Metric-Ab G) n ( λ j → ap σ (nat-inl-coproduct-Fin n i j))) ( htpy-sum-fin-sequence-type-Ab (ab-Metric-Ab G) i ( λ j → ap σ (nat-inr-coproduct-Fin n i j)))) ( refl) = partial-sum-series-Metric-Ab G ( series-terms-Metric-Ab (σ ∘ add-ℕ n)) ( i) by is-identity-left-conjugation-Ab (ab-Metric-Ab G) _ _)
External links
- Series at Wikidata
Recent changes
- 2025-09-03. Louis Wasserman. Series in metric abelian groups (#1528).