Isomorphisms of sets
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-08.
Last modified on 2024-02-06.
module foundation.isomorphisms-of-sets where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.sets open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.subtypes
Idea
Since equality of elements in a set is a proposition, isomorphisms of sets are equivalent to equivalences of sets
module _ {l1 l2 : Level} (A : Set l1) (B : Set l2) where is-iso-Set : (f : hom-Set A B) → UU (l1 ⊔ l2) is-iso-Set f = Σ (hom-Set B A) (λ g → ((f ∘ g) = id) × ((g ∘ f) = id)) iso-Set : UU (l1 ⊔ l2) iso-Set = Σ (hom-Set A B) is-iso-Set map-iso-Set : iso-Set → type-Set A → type-Set B map-iso-Set = pr1 is-iso-map-iso-Set : (f : iso-Set) → is-iso-Set (map-iso-Set f) is-iso-map-iso-Set = pr2 is-proof-irrelevant-is-iso-Set : (f : hom-Set A B) → is-proof-irrelevant (is-iso-Set f) pr1 (is-proof-irrelevant-is-iso-Set f H) = H pr2 (is-proof-irrelevant-is-iso-Set f (g , p , q)) (g' , p' , q') = eq-type-subtype ( λ h → product-Prop ( Id-Prop (hom-set-Set B B) (f ∘ h) id) ( Id-Prop (hom-set-Set A A) (h ∘ f) id)) ( ( ap (λ h → g ∘ h) (inv p')) ∙ ( ap (λ h → h ∘ g') q)) is-prop-is-iso-Set : (f : hom-Set A B) → is-prop (is-iso-Set f) is-prop-is-iso-Set f = is-prop-is-proof-irrelevant (is-proof-irrelevant-is-iso-Set f) is-iso-is-equiv-Set : {f : hom-Set A B} → is-equiv f → is-iso-Set f pr1 (is-iso-is-equiv-Set H) = map-inv-is-equiv H pr1 (pr2 (is-iso-is-equiv-Set H)) = eq-htpy (is-section-map-inv-is-equiv H) pr2 (pr2 (is-iso-is-equiv-Set H)) = eq-htpy (is-retraction-map-inv-is-equiv H) is-equiv-is-iso-Set : {f : hom-Set A B} → is-iso-Set f → is-equiv f is-equiv-is-iso-Set H = is-equiv-is-invertible ( pr1 H) ( htpy-eq (pr1 (pr2 H))) ( htpy-eq (pr2 (pr2 H))) iso-equiv-Set : equiv-Set A B → iso-Set pr1 (iso-equiv-Set e) = map-equiv e pr2 (iso-equiv-Set e) = is-iso-is-equiv-Set (is-equiv-map-equiv e) equiv-iso-Set : iso-Set → equiv-Set A B pr1 (equiv-iso-Set f) = map-iso-Set f pr2 (equiv-iso-Set f) = is-equiv-is-iso-Set (is-iso-map-iso-Set f) equiv-iso-equiv-Set : equiv-Set A B ≃ iso-Set equiv-iso-equiv-Set = equiv-type-subtype ( is-property-is-equiv) ( is-prop-is-iso-Set) ( λ f → is-iso-is-equiv-Set) ( λ f → is-equiv-is-iso-Set)
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-31. Fredrik Bakke and Egbert Rijke. Transport-split and preunivalent type families (#1013).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-24. Egbert Rijke. Abelianization (#877).