Wild representations of monoids
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-15.
Last modified on 2024-03-23.
module group-theory.wild-representations-monoids where
Imports
open import foundation.dependent-pair-types open import foundation.endomorphisms open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.monoids open import structured-types.morphisms-wild-monoids
Idea
A coherent action of a monoid M
on a type X
requires an infinite hierarchy of explicit coherences. Instead, as a first order
approximation, we can consider wild representations of M
on X
,
consisting of a
wild monoid homomorphism from M
to the wild monoid of
endomorphisms on X
.
Definition
Wild representations of a monoid in a type
wild-representation-type-Monoid : (l1 : Level) {l2 : Level} (M : Monoid l2) → UU (lsuc l1 ⊔ l2) wild-representation-type-Monoid l1 M = Σ ( UU l1) ( λ X → hom-Wild-Monoid (wild-monoid-Monoid M) (endo-Wild-Monoid X)) module _ {l1 l2 : Level} (M : Monoid l1) (ρ : wild-representation-type-Monoid l2 M) where type-wild-representation-type-Monoid : UU l2 type-wild-representation-type-Monoid = pr1 ρ hom-action-wild-representation-type-Monoid : hom-Wild-Monoid ( wild-monoid-Monoid M) ( endo-Wild-Monoid type-wild-representation-type-Monoid) hom-action-wild-representation-type-Monoid = pr2 ρ action-wild-representation-type-Monoid : type-Monoid M → endo type-wild-representation-type-Monoid action-wild-representation-type-Monoid = map-hom-Wild-Monoid ( wild-monoid-Monoid M) ( endo-Wild-Monoid type-wild-representation-type-Monoid) ( hom-action-wild-representation-type-Monoid) preserves-mul-action-wild-representation-type-Monoid : { x y : type-Monoid M} → ( action-wild-representation-type-Monoid (mul-Monoid M x y)) = ( ( action-wild-representation-type-Monoid x) ∘ ( action-wild-representation-type-Monoid y)) preserves-mul-action-wild-representation-type-Monoid = preserves-mul-hom-Wild-Monoid ( wild-monoid-Monoid M) ( endo-Wild-Monoid type-wild-representation-type-Monoid) ( hom-action-wild-representation-type-Monoid) preserves-unit-action-wild-representation-type-Monoid : action-wild-representation-type-Monoid (unit-Monoid M) = id preserves-unit-action-wild-representation-type-Monoid = preserves-unit-map-hom-Wild-Monoid ( wild-monoid-Monoid M) ( endo-Wild-Monoid type-wild-representation-type-Monoid) ( hom-action-wild-representation-type-Monoid)
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).