Resizing posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.resizing-posets where
Imports
open import category-theory.isomorphisms-in-large-precategories open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.small-types open import foundation.universe-levels open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.precategory-of-posets open import order-theory.preorders open import order-theory.resizing-preorders
Idea
Given a poset P
on a
small carrier type X
, then there is an equivalent
resized poset¶ on the small equivalent.
Definition
Resizing the underlying type of a poset
module _ {l1 l2 l3 : Level} where resize-Poset : (P : Poset l1 l2) → is-small l3 (type-Poset P) → Poset l3 l2 resize-Poset P (A , e) = ( resize-Preorder (preorder-Poset P) (A , e)) , ( λ x y p q → is-injective-map-inv-equiv e ( antisymmetric-leq-Poset P ( map-inv-equiv e x) ( map-inv-equiv e y) ( p) ( q)))
The resizing structure equivalence
module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (H : is-small l3 (type-Poset P)) where hom-resize-Poset : hom-Poset (resize-Poset P H) P hom-resize-Poset = hom-resize-Preorder (preorder-Poset P) H hom-inv-resize-Poset : hom-Poset P (resize-Poset P H) hom-inv-resize-Poset = hom-inv-resize-Preorder (preorder-Poset P) H is-right-inverse-hom-inv-resize-Poset : htpy-hom-Poset P P ( comp-hom-Poset P (resize-Poset P H) P ( hom-resize-Poset) ( hom-inv-resize-Poset)) ( id-hom-Poset P) is-right-inverse-hom-inv-resize-Poset = is-right-inverse-hom-inv-resize-Preorder (preorder-Poset P) H is-left-inverse-hom-inv-resize-Poset : htpy-hom-Poset (resize-Poset P H) (resize-Poset P H) ( comp-hom-Poset ( resize-Poset P H) ( P) ( resize-Poset P H) ( hom-inv-resize-Poset) ( hom-resize-Poset)) ( id-hom-Poset (resize-Poset P H)) is-left-inverse-hom-inv-resize-Poset = is-left-inverse-hom-inv-resize-Preorder (preorder-Poset P) H is-iso-hom-resize-Poset : is-iso-Large-Precategory ( parametric-Poset-Large-Precategory (λ l → l) (λ _ → l2)) { X = resize-Poset P H} { P} ( hom-resize-Poset) is-iso-hom-resize-Poset = ( hom-inv-resize-Poset) , ( eq-htpy-hom-Poset P P ( comp-hom-Poset P (resize-Poset P H) P ( hom-resize-Poset) ( hom-inv-resize-Poset)) ( id-hom-Poset P) ( is-right-inverse-hom-inv-resize-Poset)) , ( eq-htpy-hom-Poset (resize-Poset P H) (resize-Poset P H) ( comp-hom-Poset (resize-Poset P H) P (resize-Poset P H) ( hom-inv-resize-Poset) ( hom-resize-Poset)) ( id-hom-Poset (resize-Poset P H)) ( is-left-inverse-hom-inv-resize-Poset)) iso-resize-Poset : iso-Large-Precategory ( parametric-Poset-Large-Precategory (λ l → l) (λ _ → l2)) ( resize-Poset P H) ( P) iso-resize-Poset = hom-resize-Poset , is-iso-hom-resize-Poset
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).