Subspaces of vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.subspaces-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-submodules-rings open import linear-algebra.vector-spaces
Idea
A
subspace¶
of a vector space V over a
Heyting field F is a
submodule of V as a
left module over the underlying
ring of F.
Definition
subspace-Vector-Space : (l1 : Level) {l2 l3 : Level} (F : Heyting-Field l2) → Vector-Space l3 F → UU (lsuc l1 ⊔ l2 ⊔ l3) subspace-Vector-Space l F = left-submodule-Ring l (ring-Heyting-Field F) module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (S : subspace-Vector-Space l3 F V) where subset-subspace-Vector-Space : subtype l3 (type-Vector-Space F V) subset-subspace-Vector-Space = subset-left-submodule-Ring (ring-Heyting-Field F) V S type-subspace-Vector-Space : UU (l2 ⊔ l3) type-subspace-Vector-Space = type-subtype subset-subspace-Vector-Space vector-space-subspace-Vector-Space : Vector-Space (l2 ⊔ l3) F vector-space-subspace-Vector-Space = left-module-left-submodule-Ring (ring-Heyting-Field F) V S
External links
- Linear subspace at Wikidata
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).